Combining the data from two normal populations to estimate the mean of one when their means difference is bounded
暂无分享,去创建一个
[1] J. Berger. Statistical Decision Theory and Bayesian Analysis , 1988 .
[2] Feifang Hu,et al. The asymptotic properties of the maximum‐relevance weighted likelihood estimators , 1997 .
[3] T. Kubokawa. A Unified Approach to Improving Equivariant Estimators , 1994 .
[4] Jianqing Fan,et al. Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .
[5] H. D. Brunk. On the Estimation of Parameters Restricted by Inequalities , 1958 .
[6] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[7] A. Cohen,et al. Estimation of the Last Mean of a Monotone Sequence , 1970 .
[8] Stephen M. Stigler,et al. The 1988 Neyman Memorial Lecture: A Galtonian Perspective on Shrinkage Estimators , 1990 .
[9] B. Efron,et al. Empirical Bayes Methods for Combining Likelihoods: Comment , 1996 .
[10] R. Tibshirani,et al. Local Likelihood Estimation , 1987 .
[11] J. F. Brewster,et al. Improving on Equivariant Estimators , 1974 .
[12] H. D. Brunk,et al. AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION , 1955 .
[13] Correction on “Estimating one of two normal means when their difference is bounded” , 2002 .
[14] J. J. A. Moors. Inadmissibility of Linearly Invariant Estimators in Truncated Parameter Spaces , 1981 .
[15] H. D. Brunk. Maximum Likelihood Estimates of Monotone Parameters , 1955 .
[16] C. Eeden,et al. Bayes and admissibility properties of estimators in truncated parameter spaces , 1991 .
[17] Constance Van Eeden,et al. Maximum Likelihood Estimation of Partially or Completely Ordered Parameters. II , 1957 .
[18] Hirotugu Akaike,et al. On entropy maximization principle , 1977 .
[19] B. Efron. Empirical Bayes Methods for Combining Likelihoods , 1996 .
[20] C. Stein. THE ADMISSIBILITY OF PITMAN'S ESTIMATOR OF A SINGLE LOCATION PARAMETER' , 1959 .
[21] Constance Van Eeden,et al. Maximum Likelihood Estimation of Partially or Completely Ordered Parameters 1)1)Report SP 52 of the Statistical Department of the Mathematical Centre, Amsterdam.. I , 1957 .
[22] On the Fallacy of the Likelihood Principle , 1982 .
[23] A. Cohen,et al. Estimation of the Larger Translation Parameter , 1968 .
[24] G. Casella,et al. Estimation in Truncated Parameter Spaces. , 1986 .
[25] Feifang Hu. Relevance weighted smoothing and a new bootstrap method , 1994 .
[26] Constance Van Eeden. Maximum Likelihood Estimation Of Ordered Probabilities1) , 1956 .
[28] J. Staniswalis. The Kernel Estimate of a Regression Function in Likelihood-Based Models , 1989 .
[29] G. Casella,et al. Estimating a Bounded Normal Mean , 1981 .
[30] W. Strawderman,et al. On the Admissibility of the M.L.E. for Ordered Binomial Parameters , 1974 .
[31] J. Ware,et al. Applications of Statistics , 1978 .
[32] H. Akaike. A Bayesian analysis of the minimum AIC procedure , 1978 .