Combining the data from two normal populations to estimate the mean of one when their means difference is bounded

In this paper we address the problem of estimating θ1 when Yi∼indN(θi, σi2), i = 1, 2, are observed and |θ1 - θ2|≤ c for a known constant c. Clearly Y2 contains information about θ1. We show how the so-called weighted likelihood function may be used to generate a class of estimators that exploit that information. We discuss how the weights in the weighted likelihood may be selected to successfully trade bias for precision and thus use the information effectively. In particular, we consider adaptively weighted likelihood estimators where the weights are selected using the data. One approach selects such weights in accord with Akaike's entropy maximization criterion. We describe several estimators obtained in this way. However, the maximum likelihood estimator is investigated as a competitor to these estimators along with a Bayes estimator, a class of robust Bayes estimators and (when c is sufficiently small), a minimax estimator. Moreover we will assess their properties both numerically and theoretically. Finally, we will see how all of these estimators may be viewed as adaptively weighted likelihood estimators. In fact, an over-riding theme of the paper is that the adaptively weighted likelihood method provides a powerful extension of its classical counterpart.

[1]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[2]  Feifang Hu,et al.  The asymptotic properties of the maximum‐relevance weighted likelihood estimators , 1997 .

[3]  T. Kubokawa A Unified Approach to Improving Equivariant Estimators , 1994 .

[4]  Jianqing Fan,et al.  Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .

[5]  H. D. Brunk On the Estimation of Parameters Restricted by Inequalities , 1958 .

[6]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[7]  A. Cohen,et al.  Estimation of the Last Mean of a Monotone Sequence , 1970 .

[8]  Stephen M. Stigler,et al.  The 1988 Neyman Memorial Lecture: A Galtonian Perspective on Shrinkage Estimators , 1990 .

[9]  B. Efron,et al.  Empirical Bayes Methods for Combining Likelihoods: Comment , 1996 .

[10]  R. Tibshirani,et al.  Local Likelihood Estimation , 1987 .

[11]  J. F. Brewster,et al.  Improving on Equivariant Estimators , 1974 .

[12]  H. D. Brunk,et al.  AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION , 1955 .

[13]  Correction on “Estimating one of two normal means when their difference is bounded” , 2002 .

[14]  J. J. A. Moors Inadmissibility of Linearly Invariant Estimators in Truncated Parameter Spaces , 1981 .

[15]  H. D. Brunk Maximum Likelihood Estimates of Monotone Parameters , 1955 .

[16]  C. Eeden,et al.  Bayes and admissibility properties of estimators in truncated parameter spaces , 1991 .

[17]  Constance Van Eeden,et al.  Maximum Likelihood Estimation of Partially or Completely Ordered Parameters. II , 1957 .

[18]  Hirotugu Akaike,et al.  On entropy maximization principle , 1977 .

[19]  B. Efron Empirical Bayes Methods for Combining Likelihoods , 1996 .

[20]  C. Stein THE ADMISSIBILITY OF PITMAN'S ESTIMATOR OF A SINGLE LOCATION PARAMETER' , 1959 .

[21]  Constance Van Eeden,et al.  Maximum Likelihood Estimation of Partially or Completely Ordered Parameters 1)1)Report SP 52 of the Statistical Department of the Mathematical Centre, Amsterdam.. I , 1957 .

[22]  On the Fallacy of the Likelihood Principle , 1982 .

[23]  A. Cohen,et al.  Estimation of the Larger Translation Parameter , 1968 .

[24]  G. Casella,et al.  Estimation in Truncated Parameter Spaces. , 1986 .

[25]  Feifang Hu Relevance weighted smoothing and a new bootstrap method , 1994 .

[26]  Constance Van Eeden Maximum Likelihood Estimation Of Ordered Probabilities1) , 1956 .

[27]  Minimaxschätzer für den mittelwert ϑ einer normalverteilten zufallsgröβe mit bekannter varianz bei vorgegebener oberer und unterer schranke fiir ϑ , 1981 .

[28]  J. Staniswalis The Kernel Estimate of a Regression Function in Likelihood-Based Models , 1989 .

[29]  G. Casella,et al.  Estimating a Bounded Normal Mean , 1981 .

[30]  W. Strawderman,et al.  On the Admissibility of the M.L.E. for Ordered Binomial Parameters , 1974 .

[31]  J. Ware,et al.  Applications of Statistics , 1978 .

[32]  H. Akaike A Bayesian analysis of the minimum AIC procedure , 1978 .