Mechanical Models for the Subclasses of Catastrophes

First some concepts of the structural stability and the elementary catastrophe theory are shown. A short chapter explains which types of the catastrophes are typical at elastic structures. Hence the load parameter has a special role among the parameters, a subclassification is needed in the stability analysis. The main part of the paper shows this subclassification and illustrates almost every type by simple elastic models.

[1]  L. Kollár,et al.  Structural Stability in Engineering Practice , 1999 .

[2]  V. I. Arnol'd,et al.  Normal forms for functions near degenerate critical points, the Weyl groups of Ak, Dk, Ek and Lagrangian singularities , 1972 .

[3]  Ian Stewart,et al.  Taylor expansions and catastrophes , 1976 .

[4]  R. Thom Stabilité structurelle et morphogenèse , 1974 .

[5]  G. Hunt,et al.  IMPERFECTIONS AND NEAR‐COINCIDENCE FOR SEMISYMMETRIC BIFURCATIONS * , 1979 .

[6]  Zsolt Gáspár Imperfection Sensitivity at Near-Coincidence of Two Critical Points∗ , 1985 .

[7]  W. T. Koiter THE STABILITY OF ELASTIC EQUILIBRIUM , 1970 .

[8]  Z. Gáspár Critical imperfection territory , 1983 .

[9]  Gábor Domokos,et al.  Global description of elastic bars , 1994 .

[10]  T. W. Barrett,et al.  Catastrophe Theory, Selected Papers 1972-1977 , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  T. Tarnai,et al.  Zero stiffness elastic structures , 2003 .

[12]  László P. Kollár Postbuckling behavior of structures having infinitely great critical loads , 1990 .

[13]  Domokos Gábor An Elastic Model with Continuous Spectrum , 1991 .

[14]  Giles W Hunt,et al.  A general theory of elastic stability , 1973 .

[15]  P. N. Kaloni,et al.  Steady Flows of a Third Grade Fluid by Transformation Methods , 1990 .

[16]  Zsolt Gáspár,et al.  Buckling Models for Higher Catastrophes , 1977 .

[17]  Abbas K. Hosseini Stability of Steel Structures , 1985 .

[18]  J. M. T. Thompson,et al.  A buckling model for the set of umbilic catastrophes , 1977, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  J. Thompson,et al.  Elastic Instability Phenomena , 1984 .

[20]  Giles W Hunt,et al.  Local diffeomorphisms in the bifurcational manifestations of the umbilic catastrophes , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  F. R. Shanley Inelastic Column Theory , 1947 .