Soil-water characteristic curve and permeability function for unsaturated cracked soil

Cracks are widely present in natural and engineered soils. As water infiltration into a cracked soil often starts from unsaturated conditions, the soil-water characteristic curve (SWCC) and permeability function for the cracked soil are required when conducting seepage analysis. This paper presents a method to predict the SWCC and permeability function for cracked soil considering crack volume changes during drying-wetting processes. The cracked soil is viewed as an over- lapping continuum of a crack network system and a soil matrix system. The pore-size distributions for the two pore systems at a particular state can be determined and used to estimate the SWCCs and permeability functions. The estimated SWCCs and permeability functions for the two pore systems can be combined to give the SWCC and the permeability function for the cracked soil at that state. Then, the SWCC and permeability function for the cracked soil at different states along a crack development path can be obtained and combined to give the SWCC or permeability function for the cracked soil consider- ing crack volume changes. Examples are presented to illustrate the prediction of the SWCCs and permeability functions for a cracked soil along five crack development paths. Resume : Les sols naturels et d'ingenierie comportent de nombreuses fissures. Puisque l'infiltration de l'eau dans un sol fis- sure debute normalement a l'etat non sature, la courbe de retention d'eau (CRE) et la fonction de permeabilite du sol fissure sont necessaires pour effectuer une analyse d'infiltration. Cet article presente une methode pour predire la CRE et la fonc- tion de permeabilite pour un sol fissure en considerant les changements de volume des fissures durant les processus de mouillage-drainage. Le sol fissure est decrit comme un systeme continu et superpose compose d'un reseau de fissures et d'une matrice de sol. La distribution de la taille des pores pour les deux systemes de pores a un etat specifique peut etre de- termine et utilise pour estimer les CRE et les fonctions de permeabilite. Les CRE et les fonctions de permeabilites estimees pour les deux systemes de pores peuvent etre combinees pour donner la CRE et la fonction de permeabilite pour le sol fis- sure dans cet etat specifique. Ensuite, la CRE et la fonction de permeabilite du sol fissure a differents etats au cours du de- veloppement de fissures peut etre obtenues et combinees pour donner la CRE ou la fonction de permeabilite pour le sol fissure en considerant les variations de volume des fissures. Des exemples sont presentes afin d'illustrer la prediction des CRE et des fonctions de permeabilite pour un sol fissure selon cinq chemins de developpement de fissures. Mots-cles : sol fissure, fissures, fractures, conductivite hydraulique, fonction de permeabilite, infiltration, courbes de reten- tion d'eau, sol non sature, courbes caracteristiques sol-eau. (Traduit par la Redaction)

[1]  Li Min Zhang,et al.  Geometric parameters and REV of a crack network in soil , 2010 .

[2]  L. Zhang,et al.  Characterization of dual-structure pore-size distribution of soil , 2009 .

[3]  D. Fredlund,et al.  Equations for the soil-water characteristic curve , 1994 .

[4]  Daniela Boldini,et al.  Influence of infiltration on the periodic re-activation of slow movements in an overconsolidated clay slope , 2013 .

[5]  Li Min Zhang,et al.  Microporosity Structure of Coarse Granular Soils , 2010 .

[6]  Li Min Zhang,et al.  Predicting Bimodal Soil-Water Characteristic Curves , 2005 .

[7]  R. Haverkamp,et al.  Soil water retention. I. Introduction of a shape index , 2005 .

[8]  R. H. Brooks,et al.  Hydraulic properties of porous media , 1963 .

[9]  J. Konrad,et al.  Desiccation of a sensitive clay: field experimental observations , 1997 .

[10]  Yu Wang,et al.  Permeability tensor and representative elementary volume of saturated cracked soil , 2009 .

[11]  K D Eigenbrod,et al.  Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine-gained soils , 1996 .

[12]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[13]  T. Mizuyama,et al.  Soil Water Retention Curves Characterization of a Natural Forested Hillslope using a Scaling Technique Based on a Lognormal Pore‐Size Distribution , 2009 .

[14]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[15]  D. Fredlund,et al.  Soil Mechanics for Unsaturated Soils , 1993 .

[16]  Y. Tsang,et al.  On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff. 2. Effective continuum approximation , 1990 .

[17]  Delwyn G. Fredlund,et al.  A LABORATORY STUDY OF THE HYSTERESIS OF A THERMAL CONDUCTIVITY SOIL SUCTION SENSOR , 2002 .

[18]  N. T. Burdine Relative Permeability Calculations From Pore Size Distribution Data , 1953 .

[19]  Fook Hou Lee,et al.  Tension Crack Development in Soils , 1988 .

[20]  Colorado Colorado,et al.  AMERICAN SOCIETY OF CIVIL ENGINEERS , 2010 .

[21]  Hu Yun A numerical simulation method to determine unsaturated hydraulic parameters of fracture , 2001 .

[22]  Y.S.Z. Hai Analysis on the slope stability of expansive soils considering cracks and infiltration of rain , 2001 .

[23]  A. Fakher,et al.  Physical modeling of desiccation cracking in plastic soils , 2008 .

[24]  E. C. Childs,et al.  The permeability of porous materials , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  S. Kitsunezaki,et al.  Directional crack propagation of granular water systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  E. Kwicklis,et al.  Numerical investigation of steady liquid water flow in a variably saturated fracture network , 1993 .

[27]  J. L. Sherard Embankment dam cracking : In Embankment-dam Engineering. Textbook. Eds. R.C. Hirschfeld and S.J. Poulos. JOHN WILEY AND SONS INC., PUB., NY, 1973, 82P , 1975 .

[28]  L. Laloui,et al.  Experimental study of desiccation of soil , 2006 .

[29]  G. Bodvarsson,et al.  Constitutive relations for unsaturated flow in a fracture network:A numerical investigation , 2000 .

[30]  D. Fredlund,et al.  Predicting the permeability function for unsaturated soils using the soil-water characteristic curve , 1994 .

[31]  Delwyn G. Fredlund,et al.  A study of hysteresis models for soil-water characteristic curves , 2005 .

[32]  R. Baker,et al.  TENSILE STRENGTH TENSION CRACKS AND STABILITY OF SLOPES , 1981 .

[33]  Jayantha Kodikara,et al.  Numerical modelling of desiccation cracking , 2011 .

[34]  J. Kodikara,et al.  A Simplified Analytical Model for Desiccation Cracking of Clay Layers in Laboratory Tests , 2006 .

[35]  Ronald C. Dykhuizen,et al.  Transport of solutes through unsaturated fractured media , 1987 .

[36]  D. Fredlund,et al.  Soil Mechanics for Unsaturated Soils: Fredlund/Soil Mechanics for Unsaturated Soils , 1993 .

[37]  E. A. Klavetter,et al.  A continuum model for water movement in an unsaturated fractured rock mass , 1988 .

[38]  Abbas Firoozabadi,et al.  Capillary Pressure in Fractured Porous Media (includes associated papers 21892 and 22212 ) , 1990 .

[39]  R. Chowdhury,et al.  5. Tension cracks and slope failure , 1991 .

[40]  Jinhui Li,et al.  Field experimental study and numerical simulation of seepage in saturated/unsaturated cracked soil , 2009 .

[41]  Stanley Reitsma,et al.  Laboratory measurement of capillary pressure‐saturation relationships in a rock fracture , 1994 .

[42]  Gudmundur S. Bodvarsson,et al.  Effective transmissivity of two-dimensional fracture networks , 1995 .