Optimum Design of Skeletal Structures via Big Bang–Big Crunch Algorithm

The Big Bang–Big Crunch (BB–BC) optimization algorithm is a recently developed optimization method that relies on the Big Bang and Big Crunch theory, one of the theories of the evolution of the universe. This is an algorithm with simple implementation and a small number of parameters for adjustments. In this chapter, an improved BB–BC methodology is presented to find the optimum design of different types of skeletal structures. The new algorithm is applied to the optimum design of truss structures with continuous or discrete search domains and frame structures with a discrete search domain. The new BB–BC method is compared to the standard variant and other optimization algorithms. Numerical results show the efficiency and robustness of the present method compared to other heuristics approaches.

[1]  Ali Kaveh,et al.  Topology optimization of trusses using genetic algorithm, force method and graph theory , 2003 .

[2]  Jamshid Ghaboussi,et al.  Evolution of Optimum Structural Shapes Using Genetic Algorithm , 1998 .

[3]  Shahram Pezeshk,et al.  Optimized Design of Two-Dimensional Structures Using a Genetic Algorithm , 1998 .

[4]  Caro Lucas,et al.  Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition , 2007, 2007 IEEE Congress on Evolutionary Computation.

[5]  Siamak Talatahari,et al.  An improved ant colony optimization for constrained engineering design problems , 2010 .

[6]  Behzad Abdi,et al.  Optimization of Composite Plates Based on Imperialist Competitive Algorithm , 2010 .

[7]  O. Hasançebi,et al.  Optimal design of planar and space structures with genetic algorithms , 2000 .

[8]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[9]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[10]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[11]  Siamak Talatahari,et al.  Optimal design of skeletal structures via the charged system search algorithm , 2010 .

[12]  Siamak Talatahari,et al.  A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY METHOD FOR DISCRETE OPTIMUM DESIGN OF TRUSS STRUCTURES , 2010 .

[13]  Siamak Talatahari,et al.  A particle swarm ant colony optimization for truss structures with discrete variables , 2009 .

[14]  Siamak Talatahari,et al.  An improved ant colony optimization for the design of planar steel frames , 2010 .

[15]  Ali Kaveh,et al.  Dynamic selective pressure using hybrid evolutionary and ant system strategies for structural optimization , 2008 .

[16]  Siamak Talatahari,et al.  OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING MODIFIED CHARGED SYSTEM SEARCH , 2011 .

[17]  A. Kaveh,et al.  Hybrid charged system search and particle swarm optimization for engineering design problems , 2011 .

[18]  Saeed Shojaee,et al.  Structural topology optimization using ant colony methodology , 2008 .

[19]  Siamak Talatahari,et al.  Optimum design of skeletal structures using imperialist competitive algorithm , 2010 .

[20]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[21]  Siamak Talatahari,et al.  Geometry and topology optimization of geodesic domes using charged system search , 2011 .

[22]  V. K. Koumousis,et al.  Genetic Algorithms in Discrete Optimization of Steel Truss Roofs , 1994 .

[23]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[24]  S. O. Degertekin Optimum design of steel frames using harmony search algorithm , 2008 .

[25]  A. Kaveh,et al.  Charged system search for optimal design of frame structures , 2012, Appl. Soft Comput..

[26]  Q. H. Wu,et al.  A heuristic particle swarm optimizer for optimization of pin connected structures , 2007 .

[27]  A. Kaveh,et al.  A DISCRETE BIG BANG - BIG CRUNCH ALGORITHM FOR OPTIMAL DESIGN OF SKELETAL STRUCTURES , 2010 .

[28]  Siamak Talatahari,et al.  Optimal design of Schwedler and ribbed domes via hybrid Big Bang–Big Crunch algorithm , 2010 .

[29]  Songtao Xue,et al.  Big Bang-Big Crunch optimization for parameter estimation in structural systems , 2010 .

[30]  Siamak Talatahari,et al.  Performance-based seismic design of steel frames using ant colony optimization , 2010 .

[31]  Colorado Colorado,et al.  AMERICAN SOCIETY OF CIVIL ENGINEERS , 2010 .

[32]  A. Kaveh,et al.  Charged system search for optimum grillage system design using the LRFD-AISC code , 2010 .

[33]  Barron J. Bichon,et al.  Design of Steel Frames Using Ant Colony Optimization , 2005 .

[34]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[35]  N. Null Minimum Design Loads for Buildings and Other Structures , 2003 .

[36]  Albert A. Groenwold,et al.  Sizing design of truss structures using particle swarms , 2003 .

[37]  Garret N. Vanderplaats,et al.  An Efficient Approximation Method for Structural Synthesis with Reference to Space Structures , 1987 .

[38]  Saeed Shojaee,et al.  Optimal design of skeletal structures using ant colony optimization , 2007 .

[39]  Ranjan Ganguli,et al.  Strength design of composite beam using gradient and particle swarm optimization , 2007 .

[40]  Shyue-Jian Wu,et al.  Integrated discrete and configuration optimization of trusses using genetic algorithms , 1995 .

[41]  Kamran Behdinan,et al.  Particle swarm approach for structural design optimization , 2007 .

[42]  Charles V. Camp,et al.  Design of Space Trusses Using Ant Colony Optimization , 2004 .

[43]  P. B. Sujit,et al.  Particle swarm optimization approach for multi-objective composite box-beam design , 2007 .

[44]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[45]  O. Hasançebi,et al.  Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures , 2009 .

[46]  Mehmet Polat Saka,et al.  Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm , 2001 .

[47]  A. Kaveh,et al.  An enhanced charged system search for configuration optimization using the concept of fields of forces , 2011 .

[48]  Paolo Venini,et al.  On some applications of ant colony optimization metaheuristic to plane truss optimization , 2006 .

[49]  A. Kaveh,et al.  Size optimization of space trusses using Big Bang-Big Crunch algorithm , 2009 .

[50]  Siamak Talatahari,et al.  Ant Colony Optimization for Design of Space Trusses , 2008 .

[51]  Siamak Talatahari,et al.  IMPERIALIST COMPETITIVE ALGORITHM FOR ENGINEERING DESIGN PROBLEMS , 2010 .

[52]  Ali Kaveh,et al.  Analysis, design and optimization of structures using force method and genetic algorithm , 2006 .

[53]  P. Hajela,et al.  Genetic algorithms in truss topological optimization , 1995 .

[54]  Ali Kaveh,et al.  Design of frames using genetic algorithm, force method and graph theory , 2004 .

[55]  V. Toğan,et al.  Optimization of 3d trusses with adaptive approach in genetic algorithms , 2006 .