Doping Asymmetry Problem in ZnO: Current Status and Outlook

ZnO has gained considerable interest recently as a promising material for a variety of applications. To a large extent, the renewed interest in ZnO is fuelled by its wide direct band gap (3.3 eV at room temperature) and large exciton binding energy (60 meV) making this material, when alloyed with, e.g., Cd and Mg, especially attractive for light emitters in the blue/ultraviolet (UV) spectral region. Unfortunately, as with other wide-gap semiconductors, ZnO suffers from the doping asymmetry problem, in that the n-type conductivity can be obtained rather easily, but p-type doping proved to be a formidable challenge. This doping asymmetry problem (also dubbed as the p-type problem in ZnO) is preventing applications of ZnO in light-emitting diodes and potential laser diodes. In this paper, we provide a critical review of the current experimental efforts focused on achieving p-type ZnO and discuss the proposed approaches which could possibly be used to overcome the p-type problem.

[1]  Daniel Hofstetter,et al.  ZnO Devices and Applications: A Review of Current Status and Future Prospects , 2010, Proceedings of the IEEE.

[2]  A. Waag,et al.  Studies of N-Doped p-ZnO Layers Grown on c-Sapphire by Radical Source Molecular Beam Epitaxy , 2008 .

[3]  Sheng Chu,et al.  Electrically pumped ultraviolet ZnO diode lasers on Si , 2008 .

[4]  Jun Huang,et al.  P-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes , 2008 .

[5]  P. Galtier,et al.  Effect of chlorine doping on electrical and optical properties of ZnO thin films , 2008 .

[6]  Z. Ye,et al.  Na doping concentration tuned conductivity of ZnO films via pulsed laser deposition and electroluminescence from ZnO homojunction on silicon substrate , 2008 .

[7]  Jianguo Lu,et al.  Hydrogen‐assisted nitrogen‐acceptor doping in ZnO , 2008 .

[8]  L. J. Mandalapu,et al.  Sb-doped p-ZnO∕Ga-doped n-ZnO homojunction ultraviolet light emitting diodes , 2008 .

[9]  Yanfa Yan,et al.  Doping asymmetry in wide‐bandgap semiconductors: Origins and solutions , 2008 .

[10]  David C. Look,et al.  Origin of conductive surface layer in annealed ZnO , 2008 .

[11]  Wei Gao,et al.  Influence of post-annealing conditions on properties of ZnO:Ag films , 2008 .

[12]  H. Morkoç,et al.  Effect of Thermal Annealing on Deep and Near-band Edge Emission from ZnO Films Grown by Plasma-assisted MBE , 2008 .

[13]  C. Granqvist Transparent conductors as solar energy materials: A panoramic review , 2007 .

[14]  A. Janotti,et al.  Native point defects in ZnO , 2007 .

[15]  C. Klingshirn,et al.  ZnO: From basics towards applications , 2007 .

[16]  Z. Ye,et al.  Properties of N-doped ZnO thin films in annealing process , 2007 .

[17]  A. Waag,et al.  Layer by layer growth of ZnO on (0001) sapphire substrates by radical-source molecular beam epitaxy , 2007 .

[18]  Tae-Seok Lee,et al.  Excitonic ultraviolet lasing in ZnO-based light emitting devices , 2007 .

[19]  Jingbo Li,et al.  Possible approach to overcome the doping asymmetry in wideband gap semiconductors. , 2007, Physical review letters.

[20]  Y. Gu,et al.  Study on anomalous high p-type conductivity in ZnO films on silicon substrate prepared by ultrasonic spray pyrolysis , 2007 .

[21]  A. Dadgar,et al.  Electrical Characterization of Defect States in Local Conductivity Domains in ZnO:N,As Layers , 2007 .

[22]  Yanfa Yan,et al.  Doping of ZnO by group-IB elements , 2006 .

[23]  Jingbo Li,et al.  Design of shallow acceptors in ZnO: First-principles band-structure calculations , 2006 .

[24]  Masashi Kawasaki,et al.  Photo-Irresponsive Thin-Film Transistor with MgxZn1-xO Channel , 2006 .

[25]  Byeong Yun Oh,et al.  Transparent conductive Al-doped ZnO films for liquid crystal displays , 2006 .

[26]  Y. Ryu,et al.  Next generation of oxide photonic devices : ZnO-based ultraviolet light emitting diodes , 2006 .

[27]  Makoto Ueda,et al.  Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor , 2006, Nanotechnology.

[28]  Sang Yeol Lee,et al.  Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant , 2006 .

[29]  Shengbai Zhang,et al.  ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition , 2006 .

[30]  D. Look,et al.  Metalorganic chemical vapor deposition and characterization of ZnO materials , 2006 .

[31]  Joongoo Kang,et al.  Electronic structure of phosphorus dopants in ZnO , 2006 .

[32]  Yujia Zeng,et al.  Dopant source choice for formation of p-type ZnO: Li acceptor , 2006 .

[33]  David P. Norton,et al.  Charge carrier and spin doping in ZnO thin films , 2006 .

[34]  L. J. Mandalapu,et al.  p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy , 2006 .

[35]  D. Look,et al.  Persistent n-type photoconductivity in p-type ZnO , 2006 .

[36]  David C. Look,et al.  Donors and Acceptors in Bulk ZnO Grown by the Hydrothermal, Vapor-Phase, and Melt Processes , 2006 .

[37]  J. Bläsing,et al.  Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic , 2005 .

[38]  Choon-Bae Park,et al.  Diffusion of phosphorus and arsenic using ampoule-tube method on undoped ZnO thin films and electrical and optical properties of P-type ZnO thin films , 2005 .

[39]  L. J. Mandalapu,et al.  Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy , 2005 .

[40]  E. Alves,et al.  Direct evidence for As as a Zn-site impurity in ZnO. , 2005, Physical review letters.

[41]  L. J. Mandalapu,et al.  High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy , 2005 .

[42]  Characterizations of phosphorus doped ZnO multi-layer thin films to control carrier concentration , 2005 .

[43]  A. Dadgar,et al.  ZnO MOVPE growth: From local impurity incorporation towards p-type doping , 2005 .

[44]  A. Janotti,et al.  Oxygen vacancies in ZnO , 2005 .

[45]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[46]  Byung-Teak Lee,et al.  Pulsed-laser-deposited p-type ZnO films with phosphorus doping , 2005 .

[47]  David P. Norton,et al.  Transport properties of p-type phosphorus-doped (Zn,Mg)O grown by pulsed-laser deposition , 2005 .

[48]  Li-ping Zhu,et al.  Fabrication of p-type ZnO thin films via MOCVD method by using phosphorus as dopant source , 2005 .

[49]  Wenfeng Shen,et al.  The preparation of ZnO based gas-sensing thin films by ink-jet printing method , 2005 .

[50]  P. Holloway,et al.  Progress in semiconducting oxide-based thin-film transistors for displays , 2005 .

[51]  S. Zhang,et al.  Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO , 2005 .

[52]  Low-resistance and highly transparent Ni/indium-tin oxide ohmic contacts to phosphorous-doped p-type ZnO , 2005 .

[53]  Patrick R. Briddon,et al.  Theory of Li in ZnO: A limitation for Li-based p -type doping , 2005 .

[54]  D. Look,et al.  Study of the Photoluminescence of Phosphorus-Doped p-Type ZnO Thin Films Grown by Radio-Frequency Magnetron Sputtering , 2005 .

[55]  S. Pearton,et al.  Properties of phosphorus-doped (Zn,Mg)O thin films and device structures , 2005 .

[56]  Y. Liu,et al.  F-doping effects on electrical and optical properties of ZnO nanocrystalline films , 2005 .

[57]  Joachim Sann,et al.  Shallow donors and acceptors in ZnO , 2005 .

[58]  C. Wolden,et al.  On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide , 2005 .

[59]  Y. Ryu,et al.  Crystallinity-damage recovery and optical property of As-implanted Zno crystals by post-implantation annealing , 2005 .

[60]  Byung-Teak Lee,et al.  Preparation of As-doped p-type ZnO films using a Zn3As2∕ZnO target with pulsed laser deposition , 2005 .

[61]  Y. Tomita,et al.  Preparation of zinc oxide films containing Be and N atoms by radio frequency magnetron sputtering , 2005 .

[62]  Sehee Lee,et al.  Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy , 2005 .

[63]  H. Ohno,et al.  Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO , 2004 .

[64]  David C. Look,et al.  As-doped p-type ZnO produced by an evaporation∕sputtering process , 2004 .

[65]  San-Yuan Chen,et al.  Physical characteristics and photoluminescence properties of phosphorous-implanted ZnO thin films , 2004 .

[66]  Suhuai Wei,et al.  Overcoming the doping bottleneck in semiconductors , 2004 .

[67]  San-Yuan Chen,et al.  Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering , 2004 .

[68]  T. Yao,et al.  High‐quality ZnO epilayers grown on Zn‐polar ZnO substrates by plasma‐assisted molecular beam epitaxy , 2004 .

[69]  S. Pearton,et al.  Recent advances in processing of ZnO , 2004 .

[70]  David P. Norton,et al.  p-type behavior in phosphorus-doped (Zn,Mg)O device structures , 2004 .

[71]  D. C. Reynolds,et al.  High-Quality, Melt-Grown ZnO Single Crystals , 2004 .

[72]  C. H. Park,et al.  Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide. , 2004, Physical review letters.

[73]  P. Ziemann,et al.  Optical investigations on the annealing behavior of gallium- and nitrogen-implanted ZnO , 2004 .

[74]  David C. Look,et al.  P‐type doping and devices based on ZnO , 2004 .

[75]  H. Koinuma,et al.  SIMS analysis of ZnO films co-doped with N and Ga by temperature gradient pulsed laser deposition , 2004 .

[76]  Jürgen Christen,et al.  Bound exciton and donor–acceptor pair recombinations in ZnO , 2004 .

[77]  D. Look,et al.  Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. , 2003, Physical review letters.

[78]  A. Zunger,et al.  Dilute nonisovalent (II-VI)-(III-V) semiconductor alloys: Monodoping, codoping, and cluster doping in ZnSe-GaAs , 2003 .

[79]  L. Wood,et al.  From the Authors , 2003, European Respiratory Journal.

[80]  Z. Ye,et al.  p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations , 2003 .

[81]  T. S. Lee,et al.  Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition , 2003 .

[82]  Z. Ye,et al.  Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering , 2003 .

[83]  Benjamin J. Norris,et al.  ZnO-based transparent thin-film transistors , 2003 .

[84]  David C. Look,et al.  Hydrogen incorporation and diffusivity in plasma-exposed bulk ZnO , 2003 .

[85]  D. Look,et al.  The Path To ZnO Devices: Donor and Acceptor Dynamics , 2003 .

[86]  Suhuai Wei,et al.  Origin of p -type doping difficulty in ZnO: The impurity perspective , 2002 .

[87]  Masashi Kawasaki,et al.  Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N , 2002 .

[88]  Shigeru Niki,et al.  Growth of N-doped and Ga+N-codoped ZnO films by radical source molecular beam epitaxy , 2002 .

[89]  Frank Henecker,et al.  Hydrogen: a relevant shallow donor in zinc oxide. , 2002, Physical review letters.

[90]  Toru Aoki,et al.  p‐Type ZnO Layer Formation by Excimer Laser Doping , 2002 .

[91]  Kakuya Iwata,et al.  Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy , 2001 .

[92]  Seiji Isotani,et al.  Energetics of native defects in ZnO , 2001 .

[93]  S T Pantelides,et al.  Control of doping by impurity Cchemical potentials: predictions for p-type ZnO. , 2001, Physical review letters.

[94]  S. Irvine,et al.  Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. , 2001, Physical review letters.

[95]  A. Zunger,et al.  Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO , 2001 .

[96]  Young-Gu Jin,et al.  First-principles study of p-type doping and codoping in ZnO , 2001 .

[97]  A Theoretical Study of p-Type Doping of ZnO: Problems and Solutions , 2001 .

[98]  V. Walle,et al.  Hydrogen as a cause of doping in zinc oxide , 2000 .

[99]  G. Ceder,et al.  First-principles study of native point defects in ZnO , 2000 .

[100]  J. Gudmundsson,et al.  Hydrogen passivation of nitrogen-related energy levels in ZnSe and ZnSSe grown by MBE , 1999 .

[101]  A. Zunger,et al.  Overcoming doping bottlenecks in semiconductors and wide-gap materials , 1999 .

[102]  D. Look,et al.  Residual Native Shallow Donor in ZnO , 1999 .

[103]  Hiroshi Katayama-Yoshida,et al.  Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO , 1999 .

[104]  J. Rickards,et al.  Electrical and optical properties of fluorine-doped ZnO thin films prepared by spray pyrolysis , 1998 .

[105]  A. Zunger,et al.  A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds , 1998 .

[106]  J. Zolper,et al.  Hydrogen passivation of Ca acceptors in GaN , 1996 .

[107]  Baoping Zhang,et al.  Direct observation of nitrogen acceptor passivation in ZnSe by hydrogen plasma , 1996 .

[108]  William L. Warren,et al.  Correlation between photoluminescence and oxygen vacancies in ZnO phosphors , 1996 .

[109]  Van de Walle CG,et al.  Hydrogen in GaN: Novel aspects of a common impurity. , 1995, Physical review letters.

[110]  Robert Freer,et al.  The roles played by Ag and Al dopants in controlling the electrical properties of ZnO varistors , 1995 .

[111]  Walukiewicz Defect formation and diffusion in heavily doped semiconductors. , 1994, Physical review. B, Condensed matter.

[112]  G. Stillman,et al.  Hydrogenation of Si- and Be-doped InGaP , 1990 .

[113]  Stephen J. Pearton,et al.  Donor neutralization in GaAs(Si) by atomic hydrogen , 1985 .

[114]  T. Drummond,et al.  Hall effect and mobility in heterojunction layers , 1982 .

[115]  E. Mollwo,et al.  Energetische lage des Cu-akzeptorniveaus in ZnO-Einkristallen , 1973 .