Computing minimal doubly resolving sets of graphs
暂无分享,去创建一个
Jozef Kratica | Mirjana Cangalovic | Vera Kovacevic-Vujcic | M. Cangalovic | J. Kratica | V. Kovacevic-Vujcic | Jozef J. Kratica
[1] John E. Beasley,et al. Obtaining test problems via Internet , 1996, J. Glob. Optim..
[2] Yazid Mati,et al. A genetic local search algorithm for minimizing total weighted tardiness in the job-shop scheduling problem , 2008, Comput. Oper. Res..
[3] Jozef Kratica,et al. Solving the Maximally Balanced Connected Partition Problem in Graphs by Using Genetic Algorithm , 2008, Comput. Informatics.
[4] Zorica Stanimirovic,et al. A Genetic Algorithm Approach for the Capacitated Single Allocation P-Hub Median Problem , 2012, Comput. Informatics.
[5] Nael B. Abu-Ghazaleh,et al. Virtual Coordinate Backtracking for Void Traversal in Geographic Routing , 2005, ArXiv.
[6] Gary Chartrand,et al. Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..
[7] Nael B. Abu-Ghazaleh,et al. Virtual Coordinates with Backtracking for Void Traversal in Geographic Routing , 2006, ADHOC-NOW.
[8] Azriel Rosenfeld,et al. Landmarks in Graphs , 1996, Discret. Appl. Math..
[9] José Cáceres,et al. On the metric dimension of some families of graphs , 2005, Electron. Notes Discret. Math..
[10] Ortrud R. Oellermann,et al. The metric dimension of Cayley digraphs , 2006, Discret. Math..
[11] M. Cangalovic,et al. COMPUTING STRONG METRIC DIMENSION OF SOME SPECIAL CLASSES OF GRAPHS BY GENETIC ALGORITHMS , 2008 .
[12] F. Pezzella,et al. A genetic algorithm for the Flexible Job-shop Scheduling Problem , 2008, Comput. Oper. Res..
[13] Zvi Drezner,et al. Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem , 2008, Comput. Oper. Res..
[14] Jozef Kratica,et al. Genetic algorithms for solving the discrete ordered median problem , 2007, Eur. J. Oper. Res..
[15] H. S. Shapiro,et al. A Combinatory Detection Problem , 1963 .
[16] J. Thorpe,et al. The Mastermind game and the rigidity of the Hamming space , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[17] Gabriela Schütz,et al. Cell suppression problem: A genetic-based approach , 2008, Comput. Oper. Res..
[18] Jozef Kratica,et al. Computing the metric dimension of graphs by genetic algorithms , 2009, Comput. Optim. Appl..
[19] Mauricio G. C. Resende,et al. A random key based genetic algorithm for the resource constrained project scheduling problem , 2009, Comput. Oper. Res..
[20] Philippe Lacomme,et al. A memetic algorithm for the job-shop with time-lags , 2008, Comput. Oper. Res..
[21] Melanie Mitchell,et al. An introduction to genetic algorithms , 1996 .
[22] Thomas Erlebach,et al. Network Discovery and Verification , 2005, IEEE Journal on Selected Areas in Communications.
[23] Gary Chartrand,et al. Resolvability and the upper dimension of graphs , 2000 .
[24] Wei Li,et al. Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..
[25] David R. Wood,et al. On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..
[26] Jozef Kratica,et al. Discrete Optimization Two genetic algorithms for solving the uncapacitated single allocation p-hub median problem , 2007 .
[27] J. Beasley,et al. A tree search algorithm for the crew scheduling problem , 1996 .
[28] Vladimir Filipovic,et al. Fine-grained Tournament Selection Operator in Genetic Algorithms , 2003, Comput. Artif. Intell..
[29] David R. Wood,et al. Extremal graph theory for metric dimension and diameter , 2010 .
[30] András Sebö,et al. On Metric Generators of Graphs , 2004, Math. Oper. Res..
[31] Charles Fleurent,et al. Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..
[32] James D. Currie,et al. The metric dimension and metric independence of a graph , 2001 .