Computing minimal doubly resolving sets of graphs

In this paper we consider the minimal doubly resolving sets problem (MDRSP) of graphs. We prove that the problem is NP-hard and give its integer linear programming formulation. The problem is solved by a genetic algorithm (GA) that uses binary encoding and standard genetic operators adapted to the problem. Experimental results include three sets of ORLIB test instances: crew scheduling, pseudo-boolean and graph coloring. GA is also tested on theoretically challenging large-scale instances of hypercubes and Hamming graphs. Optimality of GA solutions on smaller size instances has been verified by total enumeration. For several larger instances optimality follows from the existing theoretical results. The GA results for MDRSP of hypercubes are used by a dynamic programming approach to obtain upper bounds for the metric dimension of large hypercubes up to 2^9^0 nodes, that cannot be directly handled by the computer.

[1]  John E. Beasley,et al.  Obtaining test problems via Internet , 1996, J. Glob. Optim..

[2]  Yazid Mati,et al.  A genetic local search algorithm for minimizing total weighted tardiness in the job-shop scheduling problem , 2008, Comput. Oper. Res..

[3]  Jozef Kratica,et al.  Solving the Maximally Balanced Connected Partition Problem in Graphs by Using Genetic Algorithm , 2008, Comput. Informatics.

[4]  Zorica Stanimirovic,et al.  A Genetic Algorithm Approach for the Capacitated Single Allocation P-Hub Median Problem , 2012, Comput. Informatics.

[5]  Nael B. Abu-Ghazaleh,et al.  Virtual Coordinate Backtracking for Void Traversal in Geographic Routing , 2005, ArXiv.

[6]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[7]  Nael B. Abu-Ghazaleh,et al.  Virtual Coordinates with Backtracking for Void Traversal in Geographic Routing , 2006, ADHOC-NOW.

[8]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[9]  José Cáceres,et al.  On the metric dimension of some families of graphs , 2005, Electron. Notes Discret. Math..

[10]  Ortrud R. Oellermann,et al.  The metric dimension of Cayley digraphs , 2006, Discret. Math..

[11]  M. Cangalovic,et al.  COMPUTING STRONG METRIC DIMENSION OF SOME SPECIAL CLASSES OF GRAPHS BY GENETIC ALGORITHMS , 2008 .

[12]  F. Pezzella,et al.  A genetic algorithm for the Flexible Job-shop Scheduling Problem , 2008, Comput. Oper. Res..

[13]  Zvi Drezner,et al.  Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem , 2008, Comput. Oper. Res..

[14]  Jozef Kratica,et al.  Genetic algorithms for solving the discrete ordered median problem , 2007, Eur. J. Oper. Res..

[15]  H. S. Shapiro,et al.  A Combinatory Detection Problem , 1963 .

[16]  J. Thorpe,et al.  The Mastermind game and the rigidity of the Hamming space , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[17]  Gabriela Schütz,et al.  Cell suppression problem: A genetic-based approach , 2008, Comput. Oper. Res..

[18]  Jozef Kratica,et al.  Computing the metric dimension of graphs by genetic algorithms , 2009, Comput. Optim. Appl..

[19]  Mauricio G. C. Resende,et al.  A random key based genetic algorithm for the resource constrained project scheduling problem , 2009, Comput. Oper. Res..

[20]  Philippe Lacomme,et al.  A memetic algorithm for the job-shop with time-lags , 2008, Comput. Oper. Res..

[21]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[22]  Thomas Erlebach,et al.  Network Discovery and Verification , 2005, IEEE Journal on Selected Areas in Communications.

[23]  Gary Chartrand,et al.  Resolvability and the upper dimension of graphs , 2000 .

[24]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[25]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[26]  Jozef Kratica,et al.  Discrete Optimization Two genetic algorithms for solving the uncapacitated single allocation p-hub median problem , 2007 .

[27]  J. Beasley,et al.  A tree search algorithm for the crew scheduling problem , 1996 .

[28]  Vladimir Filipovic,et al.  Fine-grained Tournament Selection Operator in Genetic Algorithms , 2003, Comput. Artif. Intell..

[29]  David R. Wood,et al.  Extremal graph theory for metric dimension and diameter , 2010 .

[30]  András Sebö,et al.  On Metric Generators of Graphs , 2004, Math. Oper. Res..

[31]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[32]  James D. Currie,et al.  The metric dimension and metric independence of a graph , 2001 .