Light, heat, action: neural control of fruit fly behaviour

The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory.

[1]  Ronald L. Davis,et al.  The Long-Term Memory Trace Formed in the Drosophila α/β Mushroom Body Neurons Is Abolished in Long-Term Memory Mutants , 2011, The Journal of Neuroscience.

[2]  M. Rosbash,et al.  Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain , 2008, Proceedings of the National Academy of Sciences.

[3]  Ronald L. Davis,et al.  A Late-Phase, Long-Term Memory Trace Forms in the γ Neurons of Drosophila Mushroom Bodies after Olfactory Classical Conditioning , 2010, The Journal of Neuroscience.

[4]  S. Benzer,et al.  Spongecake and eggroll: two hereditary diseases in Drosophila resemble patterns of human brain degeneration , 1997, Current Biology.

[5]  Daryl M. Gohl,et al.  Layered reward signaling through octopamine and dopamine in Drosophila , 2012, Nature.

[6]  A. Fiala,et al.  Induction of aversive learning through thermogenetic activation of Kenyon cell ensembles in Drosophila , 2014, Front. Behav. Neurosci..

[7]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[8]  W. Harris,et al.  Conditioned behavior in Drosophila melanogaster. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Benzer,et al.  Prandiology of Drosophila and the CAFE assay , 2007, Proceedings of the National Academy of Sciences.

[10]  Roger Y Tsien,et al.  Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. , 2005, Nature.

[11]  Yoshinori Aso,et al.  Distinct dopamine neurons mediate reward signals for short- and long-term memories , 2014, Proceedings of the National Academy of Sciences.

[12]  Jeffrey P. Gavornik,et al.  Spontaneous and Evoked Release Are Independently Regulated at Individual Active Zones , 2013, The Journal of Neuroscience.

[13]  Joachim Goedhart,et al.  A mTurquoise-Based cAMP Sensor for Both FLIM and Ratiometric Read-Out Has Improved Dynamic Range , 2011, PloS one.

[14]  G. Rubin,et al.  Vectors for P element-mediated gene transfer in Drosophila. , 1983, Nucleic acids research.

[15]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[16]  Michael B. Reiser,et al.  Two-photon calcium imaging from motion-sensitive neurons in head-fixed Drosophila during optomotor walking behavior , 2010, Nature Methods.

[17]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[18]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[19]  S. Tomchik,et al.  Dopaminergic Modulation of cAMP Drives Nonlinear Plasticity across the Drosophila Mushroom Body Lobes , 2014, Current Biology.

[20]  Qili Liu,et al.  Two Dopaminergic Neurons Signal to the Dorsal Fan-Shaped Body to Promote Wakefulness in Drosophila , 2012, Current Biology.

[21]  Andrew C. Lin,et al.  Sparse, Decorrelated Odor Coding in the Mushroom Body Enhances Learned Odor Discrimination , 2014, Nature Neuroscience.

[22]  W. Quinn,et al.  The amnesiac Gene Product Is Expressed in Two Neurons in the Drosophila Brain that Are Critical for Memory , 2000, Cell.

[23]  A. Fiala,et al.  Genetically Expressed Cameleon in Drosophila melanogaster Is Used to Visualize Olfactory Information in Projection Neurons , 2002, Current Biology.

[24]  Mark J. Schnitzer,et al.  Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors , 2014, Nature Communications.

[25]  D. Suzuki,et al.  Developmental properties of Shibire: a pleiotropic mutation affecting larval and adult locomotion and development. , 1973, Developmental biology.

[26]  J. C. Clemens,et al.  Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Benzer,et al.  The Swiss Cheese Mutant Causes Glial Hyperwrapping and Brain Degeneration in Drosophila , 1997, The Journal of Neuroscience.

[28]  Y. Nogi,et al.  Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae , 1984, Molecular and General Genetics MGG.

[29]  E. Isacoff,et al.  Rapid feedback regulation of synaptic efficacy during high-frequency activity at the Drosophila larval neuromuscular junction , 2013, Proceedings of the National Academy of Sciences.

[30]  Michael J. Krashes,et al.  Drosophila Dorsal Paired Medial Neurons Provide a General Mechanism for Memory Consolidation , 2006, Current Biology.

[31]  Steffen Prohaska,et al.  Large-Scale Automated Histology in the Pursuit of Connectomes , 2011, The Journal of Neuroscience.

[32]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[33]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[34]  Ronald L. Davis,et al.  Drosophila α/β Mushroom Body Neurons Form a Branch-Specific, Long-Term Cellular Memory Trace after Spaced Olfactory Conditioning , 2006, Neuron.

[35]  G. Roman,et al.  Presynaptic Inhibition of Gamma Lobe Neurons Is Required for Olfactory Learning in Drosophila , 2013, Current Biology.

[36]  Richard B. Vallee,et al.  Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis , 1991, Nature.

[37]  M. Low,et al.  Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory , 2022 .

[38]  P. Taghert,et al.  Widespread Receptivity to Neuropeptide PDF throughout the Neuronal Circadian Clock Network of Drosophila Revealed by Real-Time Cyclic AMP Imaging , 2008, Neuron.

[39]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[40]  D. McKemy,et al.  Identification of a cold receptor reveals a general role for TRP channels in thermosensation , 2002, Nature.

[41]  Stefan R. Pulver,et al.  Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics , 2013, Front. Mol. Neurosci..

[42]  W. Gehring,et al.  Detection in situ of genomic regulatory elements in Drosophila. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[43]  E. Yaksi,et al.  Electrical Coupling between Olfactory Glomeruli , 2010, Neuron.

[44]  D. Kvitsiani,et al.  Neural Circuitry that Governs Drosophila Male Courtship Behavior , 2005, Cell.

[45]  Stefan R. Pulver,et al.  An internal thermal sensor controlling temperature preference in Drosophila , 2008, Nature.

[46]  David J. Anderson,et al.  Visualizing Neuromodulation In Vivo: TANGO-Mapping of Dopamine Signaling Reveals Appetite Control of Sugar Sensing , 2012, Cell.

[47]  Hiromu Tanimoto,et al.  Two pairs of mushroom body efferent neurons are required for appetitive long-term memory retrieval in Drosophila. , 2013, Cell reports.

[48]  E. Marder,et al.  From the connectome to brain function , 2013, Nature Methods.

[49]  Ronald L. Davis,et al.  Spatiotemporal Rescue of Memory Dysfunction in Drosophila , 2003, Science.

[50]  S. Benzer,et al.  The Leucokinin Pathway and Its Neurons Regulate Meal Size in Drosophila , 2010, Current Biology.

[51]  David J. Anderson,et al.  Light Activation of an Innate Olfactory Avoidance Response in Drosophila , 2007, Current Biology.

[52]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Barry J. Dickson,et al.  Neuronal Control of Drosophila Walking Direction , 2014, Science.

[54]  K. Ikeda,et al.  Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets1 , 1983, The Journal of cell biology.

[55]  Julie H. Simpson,et al.  A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila , 2014, eLife.

[56]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[57]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[58]  Wei Zhang,et al.  Functional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway , 2010, Proceedings of the National Academy of Sciences.

[59]  A Miyawaki,et al.  Dynamic and quantitative Ca2+ measurements using improved cameleons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Troy Zars,et al.  Serotonin is necessary for place memory in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[61]  Ronald L. Davis,et al.  Eight Different Types of Dopaminergic Neurons Innervate the Drosophila Mushroom Body Neuropil: Anatomical and Physiological Heterogeneity , 2009, Front. Neural Circuits.

[62]  N. Strausfeld,et al.  Subdivision of the drosophila mushroom bodies by enhancer-trap expression patterns , 1995, Neuron.

[63]  Stephen X. Zhang,et al.  Abdominal-B Neurons Control Drosophila Virgin Female Receptivity , 2014, Current Biology.

[64]  Z. Weng,et al.  Transposition-Driven Genomic Heterogeneity in the Drosophila Brain , 2013, Science.

[65]  Vikram Chandra,et al.  Neural correlates of water reward in thirsty Drosophila , 2014, Nature Neuroscience.

[66]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[67]  Alexander M. van der Bliek,et al.  Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic , 1991, Nature.

[68]  Akira Mamiya,et al.  Imaging of an Early Memory Trace in the Drosophila Mushroom Body , 2008, The Journal of Neuroscience.

[69]  Thomas Preat,et al.  PKA Dynamics in a Drosophila Learning Center: Coincidence Detection by Rutabaga Adenylyl Cyclase and Spatial Regulation by Dunce Phosphodiesterase , 2010, Neuron.

[70]  Ronald L. Davis,et al.  Distinct Traces for Appetitive versus Aversive Olfactory Memories in DPM Neurons of Drosophila , 2012, Current Biology.

[71]  Vincent A. Pieribone,et al.  Single Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe , 2012, Neuron.

[72]  E. Isacoff,et al.  Evoked and Spontaneous Transmission Favored by Distinct Sets of Synapses , 2014, Current Biology.

[73]  S. Benzer,et al.  Defective Glia in the Drosophila Brain Degeneration Mutant drop-dead , 1993, Neuron.

[74]  Shamik Dasgupta,et al.  A Neural Circuit Mechanism Integrating Motivational State with Memory Expression in Drosophila , 2009, Cell.

[75]  G. Miesenböck,et al.  Sex-Specific Control and Tuning of the Pattern Generator for Courtship Song in Drosophila , 2008, Cell.

[76]  Leonard K. Kaczmarek,et al.  Targeted Attenuation of Electrical Activity in Drosophila Using a Genetically Modified K+ Channel , 2001, Neuron.

[77]  Jay Hirsh,et al.  Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. , 2003, Journal of neurobiology.

[78]  K. Kaiser Second generation enhancer traps , 1993, Current Biology.

[79]  G. Nagel,et al.  Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae , 2006, Current Biology.

[80]  Michael Bate,et al.  Altered Electrical Properties in DrosophilaNeurons Developing without Synaptic Transmission , 2001, The Journal of Neuroscience.

[81]  Johannes Felsenberg,et al.  Activity of Defined Mushroom Body Output Neurons Underlies Learned Olfactory Behavior in Drosophila , 2015, Neuron.

[82]  G. Rubin,et al.  A subset of dopamine neurons signals reward for odour memory in Drosophila , 2012, Nature.

[83]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[84]  Karel Svoboda,et al.  Stereotyped Odor-Evoked Activity in the Mushroom Body of Drosophila Revealed by Green Fluorescent Protein-Based Ca2+ Imaging , 2004, The Journal of Neuroscience.

[85]  P. Greengard,et al.  Writing Memories with Light-Addressable Reinforcement Circuitry , 2009, Cell.

[86]  N. Peabody,et al.  Characterization of the Decision Network for Wing Expansion in Drosophila Using Targeted Expression of the TRPM8 Channel , 2009, The Journal of Neuroscience.

[87]  Ronald L. Davis,et al.  Dynamics of Learning-Related cAMP Signaling and Stimulus Integration in the Drosophila Olfactory Pathway , 2009, Neuron.

[88]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[89]  Benjamin H. White,et al.  Focusing Transgene Expression in Drosophila by Coupling Gal4 With a Novel Split-LexA Expression System , 2011, Genetics.

[90]  B. Zemelman,et al.  Selective Photostimulation of Genetically ChARGed Neurons , 2002, Neuron.

[91]  Sen-Lin Lai,et al.  Genetic mosaic with dual binary transcriptional systems in Drosophila , 2006, Nature Neuroscience.

[92]  S. Waddell,et al.  Rapid Consolidation to a radish and Protein Synthesis-Dependent Long-Term Memory after Single-Session Appetitive Olfactory Conditioning in Drosophila , 2008, The Journal of Neuroscience.

[93]  M. Heisenberg,et al.  Dopamine and Octopamine Differentiate between Aversive and Appetitive Olfactory Memories in Drosophila , 2003, The Journal of Neuroscience.

[94]  R. Davis,et al.  The Role of Drosophila Mushroom Body Signaling in Olfactory Memory , 2001, Science.

[95]  J. Weiner,et al.  Time, Love, Memory: A Great Biologist and His Quest for the Origins of Behavior , 1999 .

[96]  T. Kitamoto,et al.  Regulation of choline acetyltransferase/lacZ fusion gene expression in putative cholinergic neurons of Drosophila melanogaster. , 1995, Journal of neurobiology.

[97]  V. Budnik,et al.  Genetic dissection of dopamine and serotonin synthesis in the nervous system of Drosophila melanogaster. , 1987, Journal of neurogenetics.

[98]  David J. Anderson,et al.  Two Different Forms of Arousal in Drosophila Are Oppositely Regulated by the Dopamine D1 Receptor Ortholog DopR via Distinct Neural Circuits , 2009, Neuron.

[99]  S. Waddell,et al.  Sequential Use of Mushroom Body Neuron Subsets during Drosophila Odor Memory Processing , 2007, Neuron.

[100]  E Rauch,et al.  Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools , 2014, Nature Communications.

[101]  Allan I Pack,et al.  Rest in Drosophila Is a Sleep-like State , 2000, Neuron.

[102]  Thomas Preat,et al.  Parallel Processing of Appetitive Short- and Long-Term Memories In Drosophila , 2011, Current Biology.

[103]  Soh Kohatsu,et al.  Female Contact Activates Male-Specific Interneurons that Trigger Stereotypic Courtship Behavior in Drosophila , 2011, Neuron.

[104]  Yoshinori Aso,et al.  Specific Dopaminergic Neurons for the Formation of Labile Aversive Memory , 2010, Current Biology.

[105]  Jin Zhang,et al.  Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. , 2006, Biochemical and biophysical research communications.

[106]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[107]  Jamey S. Kain,et al.  Asymmetric neurotransmitter release enables rapid odor lateralization in Drosophila , 2012, Nature.

[108]  Jing W. Wang,et al.  A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior , 2008, Neuron.

[109]  David J. Anderson,et al.  A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila , 2012, Proceedings of the National Academy of Sciences.

[110]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[111]  Kei Ito,et al.  A single pair of interneurons commands the Drosophila feeding motor program , 2013, Nature.

[112]  Glenn C. Turner,et al.  Integration of the olfactory code across dendritic claws of single mushroom body neurons , 2013, Nature Neuroscience.

[113]  Ronald L. Davis,et al.  Drosophila alpha/beta mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. , 2006, Neuron.

[114]  Ann-Shyn Chiang,et al.  Drosophila ORB protein in two mushroom body output neurons is necessary for long-term memory formation , 2013, Proceedings of the National Academy of Sciences.

[115]  G. Rubin,et al.  Genetic transformation of Drosophila with transposable element vectors. , 1982, Science.

[116]  Robert A. A. Campbell,et al.  Cellular-Resolution Population Imaging Reveals Robust Sparse Coding in the Drosophila Mushroom Body , 2011, The Journal of Neuroscience.

[117]  Martin J. Lohse,et al.  Novel Single Chain cAMP Sensors for Receptor-induced Signal Propagation*♦ , 2004, Journal of Biological Chemistry.

[118]  David J. Anderson,et al.  Allatostatin-A neurons inhibit feeding behavior in adult Drosophila , 2012, Proceedings of the National Academy of Sciences.

[119]  F. Kawasaki,et al.  Fast synaptic fatigue in shibire mutants reveals a rapid requirement for dynamin in synaptic vesicle membrane trafficking , 2000, Nature Neuroscience.

[120]  S. Benzer,et al.  Extended life-span and stress resistance in the Drosophila mutant methuselah. , 1998, Science.

[121]  O. Shafer,et al.  The Drosophila Circadian Clock Is a Variably Coupled Network of Multiple Peptidergic Units , 2014, Science.

[122]  D. Kleinfeld,et al.  ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation , 2013, Nature Neuroscience.

[123]  T. Kitamoto Conditional disruption of synaptic transmission induces male–male courtship behavior in Drosophila , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[124]  C. Nüsslein-Volhard,et al.  Mutations affecting segment number and polarity in Drosophila , 1980, Nature.

[125]  Gero Miesenböck,et al.  Transmission of Olfactory Information between Three Populations of Neurons in the Antennal Lobe of the Fly , 2002, Neuron.

[126]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[127]  E. Kravitz,et al.  Fighting fruit flies: A model system for the study of aggression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[128]  D. Suzuki,et al.  The effects of increased temperature on electroretinograms of temperature-sensitive paralysis mutants of Drosophila melanogaster. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Ghislain Belliart-Guérin,et al.  Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila , 2012, Nature Neuroscience.

[130]  W. Quinn,et al.  Flies, genes, and learning. , 2001, Annual review of neuroscience.

[131]  Ronald L. Davis,et al.  The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning , 2008, Nature Neuroscience.

[132]  P. McIntyre,et al.  A TRP Channel that Senses Cold Stimuli and Menthol , 2002, Cell.

[133]  Pietro Perona,et al.  Tachykinin-Expressing Neurons Control Male-Specific Aggressive Arousal in Drosophila , 2014, Cell.

[134]  A. Toga,et al.  Mapping the human connectome. , 2012, Neurosurgery.

[135]  Ronald L. Davis,et al.  Drosophila DPM Neurons Form a Delayed and Branch-Specific Memory Trace after Olfactory Classical Conditioning , 2005, Cell.

[136]  Benjamin R Arenkiel,et al.  Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing Channelrhodopsin-2 , 2014, eLife.

[137]  Christopher J. Potter,et al.  A versatile in vivo system for directed dissection of gene expression patterns , 2011, Nature Methods.

[138]  Yoshinori Aso,et al.  Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability , 2012, PLoS genetics.

[139]  G. Roman,et al.  G(o) signaling is required for Drosophila associative learning , 2006, Nature Neuroscience.

[140]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[141]  Rachel I. Wilson,et al.  Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system , 2013, Proceedings of the National Academy of Sciences.

[142]  Alexander Borst,et al.  Optogenetic and Pharmacologic Dissection of Feedforward Inhibition in Drosophila Motion Vision , 2014, The Journal of Neuroscience.

[143]  C. Goding,et al.  C-myc and the yeast transcription factor PHO4 share a common CACGTG-binding motif. , 1991, Oncogene.

[144]  Liqun Luo,et al.  Improved and expanded Q-system reagents for genetic manipulations , 2014, Nature Methods.

[145]  Dmitrij Ljaschenko,et al.  Hebbian plasticity guides maturation of glutamate receptor fields in vivo. , 2013, Cell reports.

[146]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[147]  Roger Y. Tsien,et al.  Insulin disrupts β-adrenergic signalling to protein kinase A in adipocytes , 2005, Nature.

[148]  David J. Anderson,et al.  Optogenetic control of freely behaving adult Drosophila using a red-shifted channelrhodopsin , 2013, Nature Methods.

[149]  V. Pieribone,et al.  Genetically Targeted Optical Electrophysiology in Intact Neural Circuits , 2013, Cell.

[150]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[151]  Ronald L. Davis,et al.  System-Like Consolidation of Olfactory Memories in Drosophila , 2013, The Journal of Neuroscience.

[152]  Katherine I. Nagel,et al.  Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics , 2014, Nature Neuroscience.

[153]  E. Lewis A gene complex controlling segmentation in Drosophila , 1978, Nature.

[154]  R J Konopka,et al.  Clock mutants of Drosophila melanogaster. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[155]  R. Kerr,et al.  Optical Imaging of Calcium Transients in Neurons and Pharyngeal Muscle of C. elegans , 2000, Neuron.

[156]  K. Ikeda,et al.  Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster , 1983, The Journal of cell biology.

[157]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[158]  S. Benzer,et al.  Courtship in Drosophila mosaics: sex-specific foci for sequential action patterns. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[159]  Liang Liang,et al.  The Q System: A Repressible Binary System for Transgene Expression, Lineage Tracing, and Mosaic Analysis , 2010, Cell.

[160]  J. Armstrong,et al.  Synchronized Neural Activity in the Drosophila Memory Centers and Its Modulation by amnesiac , 2001, Neuron.

[161]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[162]  S. Hagiwara,et al.  Synaptic transmission reversibly conditioned by single-gene mutation in Drosophila melanogaster , 1976, Nature.

[163]  F. Diao,et al.  Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. , 2015, Cell reports.

[164]  Kei Ito,et al.  Identification of a dopamine pathway that regulates sleep and arousal in Drosophila , 2012, Nature Neuroscience.

[165]  Scott Waddell,et al.  Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila , 2015, Current Biology.

[166]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[167]  G. Tononi,et al.  Correlates of sleep and waking in Drosophila melanogaster. , 2000, Science.

[168]  Michael N Nitabach,et al.  Electrical Silencing of Drosophila Pacemaker Neurons Stops the Free-Running Circadian Clock , 2002, Cell.

[169]  S. Benzer,et al.  Obesity-Blocking Neurons in Drosophila , 2009, Neuron.

[170]  A. Fiala,et al.  Punishment Prediction by Dopaminergic Neurons in Drosophila , 2005, Current Biology.

[171]  Matthew S. Thimgan,et al.  Inducing Sleep by Remote Control Facilitates Memory Consolidation in Drosophila , 2011, Science.

[172]  G. Nagel,et al.  Channelrhodopsin-2–XXL, a powerful optogenetic tool for low-light applications , 2014, Proceedings of the National Academy of Sciences.

[173]  Hongkui Zeng,et al.  Neuroinformatics of the Allen Mouse Brain Connectivity Atlas. , 2015, Methods.

[174]  A. Wong,et al.  Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain , 2003, Cell.

[175]  Kei Ito,et al.  A Large-Scale Behavioral Screen to Identify Neurons Controlling Motor Programs in the Drosophila Brain , 2013, G3: Genes, Genomes, Genetics.

[176]  Pierre Trifilieff,et al.  Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: Relations to extrinsic neurons expressing different neurotransmitters , 2008, The Journal of comparative neurology.

[177]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[178]  B. Zemelman,et al.  Photochemical gating of heterologous ion channels: Remote control over genetically designated populations of neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[179]  G. Rubin,et al.  Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila , 2011, Nature Neuroscience.

[180]  Ronald L. Davis,et al.  Dopamine Is Required for Learning and Forgetting in Drosophila , 2012, Neuron.