The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray,Platyrhinoidis triseriata (Elasmobranchii)

SummaryCentral lateral line pathways were mapped in the thornback ray,Platyrhinoidis triseriata, by analyzing depth profiles of averaged evoked potentials (AEPs), multiunit activity (MUA), and single unit recordings.1.Neural activity evoked by contra- or ipsilateral posterior lateral line nerve (pLLN) shock is restricted to the tectum mesencephali, the dorsomedial nucleus (DMN) and anterior nucleus (AN) of the mesencephalic nuclear complex, the posterior central thalamic nucleus (PCT), the lateral tuberal nucleus of the hypothalamus, and the deep medial pallium of the telencephalon (Figs. 2, 3, 4, 6, 7).2.Neural responses (AEPs and MUA) recorded in different lateral line areas differ with respect to shape, dynamic response properties, and/or latencies (Figs. 9, 10 and Table 1).3.Ipsilaterally recorded mesencephalic and diencephalic AEPs are less pronounced and of longer latency than their contralateral counterpart (Fig. 9 and Table 1). In contrast, AEP recorded in the telencephalon show a weak ipsilateral preference.4.If stimulated with a low amplitude water wave most DMN, AN, and tectal lateral line units respond in the frequency range 6.5 Hz to 200 Hz. Best frequencies (in terms of least displacement) are 75–150 Hz with a peak-to-peak water displacement of 0.04 μm sufficient to evoke a response in the most sensitive units (Fig. 11A, B, C).5.DMN and AN lateral line units have small excitatory receptive fields (RFs). Anterior, middle, and posterior body surfaces map onto the rostral, middle, and posterior brain surfaces of the contralateral DMN (Fig. 12).6.Some units recorded in the PCT are bimodal; they respond to a hydrodynamic flow field — generated with a ruler approaching the fish — only if the light is on and the eye facing the ruler is left uncovered (Fig. 13).

[1]  Horst Bleckmann,et al.  Reaction time and stimulus frequency in prey localization in the surface-feeding fishAplocheilus lineatus , 1980, Journal of comparative physiology.

[2]  W Heiligenberg,et al.  The electric sense of weakly electric fish. , 1984, Annual review of physiology.

[3]  A. Elepfandt,et al.  Water wave frequency discrimination in the clawed frog,Xenopus laevis , 1985, Journal of Comparative Physiology A.

[4]  T. Teyke,et al.  Collision with and avoidance of obstacles by blind cave fishAnoptichthys jordani (Characidae) , 1985, Journal of Comparative Physiology A.

[5]  L. Compagno,et al.  Phyletic Relationships of Living Sharks and Rays , 1977 .

[6]  Gerard G. Harris,et al.  Evidence that the Lateral‐Line Organ Responds to Near‐Field Displacements of Sound Sources in Water , 1962 .

[7]  W. Plassmann,et al.  Coding of amplitude-modulated tones in the central auditory system of catfish , 1985, Hearing Research.

[8]  Peter Görner,et al.  Lateral-Line Input and Stimulus Localization in the African Clawed Toad Xenopus SP , 1984 .

[9]  Catherine A. McCormick,et al.  Central Connections of the Octavolateralis System: Evolutionary Considerations , 1988 .

[10]  T. Bullock,et al.  Acoustic evoked activity in the brain in sharks , 1979, Journal of Comparative Physiology.

[11]  The significance of water surface-waves in the communication of fire-bellied toads , 2004, Naturwissenschaften.

[12]  T. Bullock,et al.  Comparison of electroreceptor, mechanoreceptor and optic evoked potentials in the brain of some rays and sharks , 1974, Journal of comparative physiology.

[13]  D. Cohen,et al.  Electrophysiological Identification of a Visual Area in Shark Telencephalon , 1973, Science.

[14]  E. Vandenbussche,et al.  Convergence of retinal and lateral line stimulation on tectum opticum and cerebellar neurones. , 1967, Archives internationales de physiologie et de biochimie.

[15]  J. E. Rose,et al.  A metal-filled microelectrode. , 1953, Science.

[16]  D. Lowe,et al.  Mesencephalic and diencephalic cobalt-lysine injections in an elasmobranch: Evidence for two parallel electrosensory pathways , 1984, Neuroscience Letters.

[17]  R. L. Boord,et al.  Ascending lateral line pathways to the midbrain of the clearnose skate, Raja eglanteria , 1982, The Journal of comparative neurology.

[18]  M. Späth,et al.  The effect of metacaine (MS-222) on the activity of the efferent and afferent nerves in the teleost lateral-line system , 1977, Naunyn-Schmiedeberg's Archives of Pharmacology.

[19]  W. Smeets,et al.  The Central Nervous System of Cartilaginous Fishes: Structure and Functional Correlations , 1983 .

[20]  Horst Bleckmann,et al.  Frequency discrimination of the surface-feeding fishAplocheilus lineatus — A prerequisite for prey localization? , 1981, Journal of comparative physiology.

[21]  D. Lowe Organisation of lateral line and auditory areas in the midbrain of Xenopus laevis , 1986, The Journal of comparative neurology.

[22]  C. Kappers,et al.  The comparative anatomy of the nervous system of vertebrates, including man , 1936 .

[23]  P. Luiten Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). II. Ascending thalamo‐telencephalic connections , 1981, The Journal of comparative neurology.

[24]  A. Elepfandt Naturalistic conditioning reveals good learning in a frog (Xenopus laevis) , 1985, Naturwissenschaften.

[25]  W. Smeets,et al.  The central nervous system of cartilaginous fishes: a neuro-anatomical study based on normal and experimental material , 1983 .

[26]  C. Campenhausen,et al.  Detection of stationary objects by the blind Cave FishAnoptichthys jordani (Characidae) , 1981, Journal of comparative physiology.

[27]  R. Northcutt,et al.  An electrosensory area in the telencephalon of the little skate, Raja erinacea , 1984, Brain Research.

[28]  H. Bleckmann,et al.  The functional significance of frequency modulation within a wave train for prey localization in the surface-feeding fishAplocheilus lineatus (Cyprinodontidae) , 1982, Journal of comparative physiology.

[29]  S. Coombs,et al.  Diversity of Lateral Line Systems: Evolutionary and Functional Considerations , 1988 .

[30]  D. M. Schroeder,et al.  Connections of the Nurse Shark's Telencephalon , 1971, Science.

[31]  Bullock Th Processing of ampullary input in the brain: comparison of sensitivity and evoked responses among elasmobranch and siluriform fishes. , 1979 .

[32]  Ad. J. Kalmijn,et al.  Detection of Weak Electric Fields , 1988 .

[33]  David Bodznick,et al.  Segregation of electro- and mechanoreceptive inputs to the elasmobranch medulla , 1980, Brain Research.

[34]  B. Claas,et al.  Directional sensitivity of lateral line units in the clawed toadXenopus laevis Daudin , 1986, Journal of Comparative Physiology A.

[35]  H. Scheich,et al.  Laminar Organization of the Torus Semicircularis Related to the Input from Two Types of Electroreceptors , 1976 .

[36]  T. Finger Nonolfactory sensory pathway to the telencephalon in a teleost fish. , 1980, Science.

[37]  R. Northcutt,et al.  Auditory centers in the elasmobranch brain stem: Deoxyglucose autoradiography and evoked potential recording , 1982, Brain Research.

[38]  J. T. Corwin,et al.  Acoustic evoked activity in the brain in sharks , 1979, Journal of Comparative Physiology A.

[39]  T. Bullock,et al.  The Sensory Functions of the Cerebellum of the Thornback Ray, Platyrhinoidis triseriata , 1982 .

[40]  P. Görner,et al.  The area octavo-lateralis in Xenopus laevis , 2004, Cell and Tissue Research.

[41]  N. Schellart Acousticolateral and visual processing and their interaction in the torus semicircularis of the trout, Salmo gairdneri , 1983, Neuroscience Letters.

[42]  P. Görner,et al.  Multisensory interaction in the torus semicircularis of the clawed toad Xenopus laevis , 1985, Neuroscience Letters.

[43]  T. H. Bullock,et al.  The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality , 1983, Brain Research Reviews.

[44]  H. Münz,et al.  Single unit activity in the peripheral lateral line system of the cichlid fishSarotherodon niloticus L. , 1985, Journal of Comparative Physiology A.

[45]  S. Echteler Tonotopic organization in the midbrain of a teleost fish , 1985, Brain Research.

[46]  Accepted September,et al.  Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. , 1985 .

[47]  W Freeman THE FUNCTION OF THE LATERAL LINE ORGANS. , 1928, Science.

[48]  W. Plassmann Sensory modality interdependence in the octaval system of an elasmobranch , 2004, Experimental Brain Research.

[49]  Determination of Source-Distance by the Surface-Feeding Fishes Aplocheilus lineatus (Cyprinodontidae) and Pantodon buchholzi (Pantodontidae) , 1984 .

[50]  S. Dijkgraaf THE FUNCTIONING and SIGNIFICANCE OF THE LATERAL‐LINE ORGANS , 1963, Biological reviews of the Cambridge Philosophical Society.

[51]  Kåre Bäckström CONTRIBUTIONS TO THE FOREBRAIN MORPHOLOGY IN SELACHIANS , 1924 .

[52]  P. Luiten Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). I. Retinal projections , 1981, The Journal of comparative neurology.

[53]  D. Caird,et al.  A simple cerebellar system: The lateral line lobe of the goldfish , 1978, Journal of comparative physiology.

[54]  H. Bleckmann,et al.  Determination of source distance in the surface-feeding fish Pantodon buchholzi Pantodontidae , 1984, Animal Behaviour.

[55]  J. Schweitzer Functional organization of the electroreceptive midbrain in an elasmobranch (Platyrhinoidis triseriata) , 2004, Journal of Comparative Physiology A.

[56]  T. Finger,et al.  Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish , 1984, The Journal of comparative neurology.

[57]  E. Knudsen Distinct auditory and lateral line nuclei in the midbrain of catfishes , 1977, The Journal of comparative neurology.

[58]  J. Schweitzer The physiological and anatomical localization of two electroreceptive diencephalic nuclei in the thornback ray,Platyrhinoidis triseriata , 1983, Journal of comparative physiology.

[59]  T. Bullock,et al.  Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: evoked potential evidence. , 1982, Journal of neurobiology.

[60]  Jelle Atema,et al.  Sensory Biology of Aquatic Animals , 1988, Springer New York.

[61]  C. Campenhausen,et al.  Discrimination between stationary objects by the blind cave fishAnoptichthys jordani (Characidae) , 1981, Journal of comparative physiology.

[62]  T. Bullock Processing of ampullary input in the brain: comparison of sensitivity and evoked responses among elasmobranch and siluriform fishes. , 1979, Journal de physiologie.

[63]  Stephen M. Echteler,et al.  Organization of central auditory pathways in a teleost fish,Cyprinus carpio , 1985, Journal of Comparative Physiology A.

[64]  D. M. Koester Central projections of the octavolateralis nerves of the clearnose skate, Raja eglanteria , 1983, The Journal of comparative neurology.

[65]  P. Görner,et al.  The area octavo-lateralis in Xenopus laevis , 2004, Cell and Tissue Research.