Scalable Harmonization of Complex Networks With Local Adaptive Controllers

Computational and communication complexities call for distributed, robust, and adaptive control. This paper proposes a promising way of bottom-up design of distributed control in which simple controllers are responsible for individual nodes. The overall behavior of the network can be achieved by interconnecting such controlled loops in cascade control for example and by enabling the individual nodes to share information about data with their neighbors without aiming at unattainable global solution. The problem is addressed by employing a fully probabilistic design, which can cope with inherent uncertainties, that can be implemented adaptively and which provide a systematic rich way to information sharing. This paper elaborates the overall solution, applies it to linear-Gaussian case, and provides simulation results.

[1]  V. Peterka BAYESIAN APPROACH TO SYSTEM IDENTIFICATION , 1981 .

[2]  Randa Herzallah,et al.  Probabilistic Synchronization of Pinning Control , 2012 .

[3]  Li Chen,et al.  Survey of Preference Elicitation Methods , 2004 .

[4]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[5]  Frank L. Lewis,et al.  Distributed adaptive control for synchronization of unknown nonlinear networked systems , 2010, Autom..

[6]  M. Raginsky,et al.  Online Markov decision processes with Kullback-Leibler control cost , 2012, ACC.

[7]  Maurizio Porfiri,et al.  Global pinning controllability of complex networks , 2008 .

[8]  Warren B. Powell,et al.  Handbook of Learning and Approximate Dynamic Programming , 2006, IEEE Transactions on Automatic Control.

[9]  Miroslav Kárný,et al.  Axiomatisation of fully probabilistic design , 2012, Inf. Sci..

[10]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[11]  Maurizio Porfiri,et al.  Criteria for global pinning-controllability of complex networks , 2008, Autom..

[12]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .

[13]  Michael Chertkov,et al.  Message passing for optimization and control of a power grid: model of a distribution system with redundancy. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  J. A. Bather Markovian Decision Processes , 1971 .

[15]  Tatiana V. Guy,et al.  Fully probabilistic design of hierarchical Bayesian models , 2016, Inf. Sci..

[16]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[17]  Randa Herzallah,et al.  Probabilistic synchronisation of pinning control , 2012, Int. J. Control.

[18]  Lubomír Bakule,et al.  Decentralized control: Status and outlook , 2014, Annu. Rev. Control..

[19]  Tatiana V. Guy,et al.  On the Origins of Imperfection and Apparent Non-rationality , 2015, Decision Making.

[20]  M. Rao Measure Theory and Integration , 2018 .

[21]  Lubomír Bakule,et al.  Decentralized control: An overview , 2008, Annu. Rev. Control..

[22]  Jan M. Van Campenhout,et al.  Maximum entropy and conditional probability , 1981, IEEE Trans. Inf. Theory.

[23]  Tatiana V. Guy,et al.  Preference elicitation in Fully Probabilistic Design of decision strategies , 2010, 49th IEEE Conference on Decision and Control (CDC).

[24]  Malte Brettel,et al.  How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective , 2014 .

[25]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[26]  Patchigolla Kiran Kumar,et al.  A Survey of Some Results in Stochastic Adaptive Control , 1985 .

[27]  Tatiana V. Guy,et al.  Fully probabilistic control design , 2006, Syst. Control. Lett..

[28]  T. Pitcher Review: O. Barndorff-Nielsen, Information and exponential families in statistical theory , 1979 .

[29]  Václav Peterka,et al.  Control of uncertain processes: applied theory and algorithms , 1986, Kybernetika.

[30]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[31]  Václav Peterka,et al.  Bayesian system identification , 1979, Autom..

[32]  Miroslav Kárný,et al.  Merging of data knowledge in bayesian estimation , 2005, ICINCO.

[33]  Ali M. Shatnawi,et al.  Intelligent Traffic Light Flow Control System Using Wireless Sensors Networks , 2010, J. Inf. Sci. Eng..

[34]  Miroslav Kárný,et al.  Approximate Bayesian recursive estimation , 2014, Inf. Sci..

[35]  Miroslav Kárný Towards Fully Probabilistic Control Design , 1995 .

[36]  B. O. Koopman On distributions admitting a sufficient statistic , 1936 .

[37]  Tatiana V. Guy,et al.  On Support of Imperfect Bayesian Participants , 2012 .

[38]  Tatiana V. Guy,et al.  Lazy Fully Probabilistic Design of Decision Strategies , 2014, ISNN.

[39]  Emanuel Todorov,et al.  Linearly-solvable Markov decision problems , 2006, NIPS.

[40]  Tuan Anh Nguyen,et al.  Energy intelligent buildings based on user activity: A survey , 2013 .

[41]  R. Kulhavý,et al.  On a general concept of forgetting , 1993 .

[42]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[43]  Tatiana V. Guy,et al.  Fully probabilistic knowledge expression and incorporation , 2014 .

[44]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .