Measures on contour, polymer or animal models. A probabilistic approach

We present a new approach to study measures on ensembles of contours, polymers or other objects interacting by some sort of exclusion condition. For concreteness we develop it here for the case of Peierls contours. Unlike existing methods, which are based on cluster-expansion formalisms and/or complex analysis, our method is strictly probabilistic and hence can be applied even in the absence of analyticity properties. It involves a Harris graphical construction of a loss network for which the measure of interest is invariant. The existence of the process and its mixing properties depend on the absence of infinite clusters for a dual (backwards) oriented percolation process which we dominate by a multitype branching process. Within the region of subcriticality of this branching process the approach yields: (i) exponential convergence to the equilibrium (=contour) measures, (ii) standard clustering and finite-effect properties of the contour measure, (iii) a particularly strong form of the central limit theorem, and (iv) a Poisson approximation for the distribution of contours at low temperature.

[1]  T. E. Harris,et al.  Nearest-neighbor Markov interaction processes on multidimensional lattices , 1972 .

[2]  Rick Durrett,et al.  Ten lectures on particle systems , 1995 .

[3]  H. Kunz,et al.  General properties of polymer systems , 1971 .

[4]  V. Malyshev CLUSTER EXPANSIONS IN LATTICE MODELS OF STATISTICAL PHYSICS AND THE QUANTUM THEORY OF FIELDS , 1980 .

[5]  S. Zachary,et al.  Loss networks , 2009, 0903.0640.

[6]  E. Olivieri On a cluster expansion for lattice spin systems: A finite-size condition for the convergence , 1988 .

[7]  J. Bricmont,et al.  High temperature expansions and dynamical systems , 1995 .

[8]  R. Dobrushin Existence of a Phase Transition in Two-Dimensional and Three-Dimensional Ising Models , 1965 .

[9]  P. Ferrari,et al.  One-dimensional loss networks and conditioned M/G/∞ queues , 1998, Journal of Applied Probability.

[10]  Erwin Bolthausen,et al.  On the Central Limit Theorem for Stationary Mixing Random Fields , 1982 .

[11]  David Preiss,et al.  Cluster expansion for abstract polymer models , 1986 .

[12]  R. L. Dobrushin,et al.  Estimates of semiinvariants for the Ising model at low temperatures , 1996 .

[13]  J. Glimm,et al.  A convergent expansion about mean field theory: II. Convergence of the expansion , 1976 .

[14]  J. Glimm,et al.  A convergent expansion about mean field theory: I. The expansion , 1976 .

[15]  C. Borgs,et al.  A unified approach to phase diagrams in field theory and statistical mechanics , 1989 .

[16]  R. L. Dobrushin,et al.  Perturbation methods of the theory of Gibbsian fields , 1996 .

[17]  C. Pfister Large deviations and phase separation in the two-dimensional Ising model , 1991 .

[18]  R. Peierls On Ising's model of ferromagnetism , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Miloš Zahradník,et al.  An alternate version of Pirogov-Sinai theory , 1984 .

[20]  Percolation of the minority spins in high-dimensional Ising models , 1987 .

[21]  Pierre Picco,et al.  Cluster expansion ford-dimensional lattice systems and finite-volume factorization properties , 1990 .

[22]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[23]  J. Lebowitz,et al.  Improved Peierls Argument for High-Dimensional Ising Models , 1998, cond-mat/9809158.

[24]  Abel Klein,et al.  Taming Griffiths' singularities: Infinite differentiability of quenched correlation functions , 1995 .

[25]  H. Bunke,et al.  T. E. Harris, The Theory of Branching Processes (Die Grundlehren der mathematischen Wissenschaften, Band 119). XVI + 230 S. m. 6 Fig. Berlin/Göttingen/Heidelberg 1963. Springer‐Verlag. Preis geb. DM 36,— , 1965 .

[26]  P. Hall On Continuum Percolation , 1985 .

[27]  ESTIMATES OF SEMIINVARIANTS FOR THEISING MODEL AT LOW TEMPERATURESR , 2009 .

[28]  Robert B. Griffiths,et al.  Peierls Proof of Spontaneous Magnetization in a Two-Dimensional Ising Ferromagnet , 1964 .

[29]  J. Bricmont,et al.  Infinite-dimensional SRB measures , 1995, chao-dyn/9509022.

[30]  Camillo Cammarota,et al.  Decay of correlations for infinite range interactions in unbounded spin systems , 1982 .

[31]  Erhard Seiler,et al.  Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics , 1982 .