Synthesis and Photoelectrochemical Properties of (Cu2Sn)xZn3(1–x)S3 Nanocrystal Films

This work provides new routes for developing efficient photoelectrodes for photoelectrochemical (PEC) water splitting using a low-cost electrophoretic film preparation method. A series of (Cu2Sn)xZn3(1–x)S3 (0 ≤ x ≤ 0.75) quaternary nanocrystals (NCs) with tunable optical band gaps are synthesized. Morphologies including particles, rods, and wires are obtained by tuning the composition of the NCs. (Cu2Sn)0.75Zn0.75S3 (Cu2ZnSnS4) has a pure kesterite structure, but an increase in the Zn content results in a kesterite–wurtzite polytypism. (Cu2Sn)xZn3(1–x)S3 films are fabricated from their colloidal solutions via electrophoretic deposition, and the PEC properties of these films with p-type character have been examined under water-splitting conditions. It is shown that the photocurrent varies as a function of film thickness as well as chemical composition. The produced (Cu2Sn)0.45Zn1.65S3 (x = 0.45) film has the highest photocurrent, and the incident photon to current conversion efficiency is improved compare...

[1]  S. Kuwabata,et al.  Composition-Dependent Photoelectrochemical Properties of Nonstoichiometric Cu2ZnSnS4 Nanoparticles , 2013 .

[2]  K. Sivula,et al.  Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. , 2013, ACS applied materials & interfaces.

[3]  H. Katagiri,et al.  Fabrication of Cu2SnS3 thin films by sulfurization of evaporated Cu‐Sn precursors for solar cells , 2013 .

[4]  A. Ennaoui,et al.  In situ monitoring of electrophoretic deposition of Cu2ZnSnS4 nanocrystals , 2013 .

[5]  Supratik Guha,et al.  Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber , 2013 .

[6]  Tayfun Gokmen,et al.  Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells , 2013 .

[7]  Y. Tachibana,et al.  Artificial photosynthesis for solar water-splitting , 2012, Nature Photonics.

[8]  Aron Walsh,et al.  Kesterite Thin‐Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4 , 2012 .

[9]  Jae Sung Lee,et al.  Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. , 2012, Angewandte Chemie.

[10]  K. Domen,et al.  Enhanced photoelectrochemical properties of CuGa3Se5 thin films for water splitting by the hydrogen mediated co-evaporation method , 2012 .

[11]  Liejin Guo,et al.  Highly efficient visible-light-driven photocatalytic hydrogen production from water using Cd0.5Zn0.5S/TNTs (titanate nanotubes) nanocomposites without noble metals , 2012 .

[12]  J. Dickerson,et al.  Toward dynamic control over TiO2 nanocrystal monolayer-by-monolayer film formation by electrophoretic deposition in nonpolar solvents. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[13]  K. Ryan,et al.  Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. , 2012, Journal of the American Chemical Society.

[14]  L. Romankiw,et al.  A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell , 2012 .

[15]  P. Kamat,et al.  CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry. , 2011, ACS nano.

[16]  E. Aydil,et al.  Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. , 2011, Chemical communications.

[17]  Shaohua Shen,et al.  A perspective on solar-driven water splitting with all-oxide hetero-nanostructures , 2011 .

[18]  Baoping Lin,et al.  Synthesis of shape-controlled monodisperse wurtzite CuIn(x)Ga(1-x)S2 semiconductor nanocrystals with tunable band gap. , 2011, Journal of the American Chemical Society.

[19]  Jinhua Ye,et al.  Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. , 2011, ACS nano.

[20]  Stafford W. Sheehan,et al.  Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review , 2011 .

[21]  Rakesh Agrawal,et al.  Earth Abundant Element Cu2Zn(Sn1−xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication , 2011 .

[22]  C. Burda,et al.  Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States , 2011 .

[23]  Yadong Li,et al.  Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. , 2011, Chemical communications.

[24]  Y. Tong,et al.  The roles of defect states in photoelectric and photocatalytic processes for ZnxCd1−xS , 2011 .

[25]  Yuhan Lin,et al.  Alloyed (ZnS)(x)(Cu2SnS3)(1-x) and (CuInS2)(x)(Cu2SnS3)(1-x) nanocrystals with arbitrary composition and broad tunable band gaps. , 2011, Chemical communications.

[26]  Liejin Guo,et al.  Vertically aligned WO₃ nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. , 2011, Nano letters.

[27]  Jun Kubota,et al.  Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating , 2011 .

[28]  Sun Min Lee,et al.  Photoreduction of water by using modified CuInS2 electrodes. , 2010, ChemSusChem.

[29]  B. Parkinson,et al.  Photoelectrochemical characterization of nanocrystalline thin-film Cu₂ZnSnS₄ photocathodes. , 2011, ACS applied materials & interfaces.

[30]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[31]  K. Domen,et al.  H2 Evolution from Water on Modified Cu2ZnSnS4 Photoelectrode under Solar Light , 2010 .

[32]  Zhaojun Lin,et al.  Band-gap tunable (Cu2Sn)(x/3)Zn(1-x)S nanoparticles for solar cells. , 2010, Chemical communications.

[33]  Liejin Guo,et al.  Synthesis, characterization, and photoelectrochemical study of Cd1―xZnxS solid solution thin films deposited by spray pyrolysis for water splitting , 2010 .

[34]  S. Kuwabata,et al.  Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films , 2010 .

[35]  M. Grätzel,et al.  Controlling Photoactivity in Ultrathin Hematite Films for Solar Water‐Splitting , 2010 .

[36]  S. V. Mahajan,et al.  Understanding the growth of Eu2O3 nanocrystal films made via electrophoretic deposition , 2010, Nanotechnology.

[37]  Jun Zhang,et al.  Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. , 2010, ACS nano.

[38]  A. Kudo,et al.  Novel Stannite-type Complex Sulfide Photocatalysts AI2-Zn-AIV-S4 (AI = Cu and Ag; AIV = Sn and Ge) for Hydrogen Evolution under Visible-Light Irradiation , 2010 .

[39]  Vahid Akhavan,et al.  Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.

[40]  Rakesh Agrawal,et al.  Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. , 2009, Journal of the American Chemical Society.

[41]  A. Walsh,et al.  Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds , 2009 .

[42]  Eric L. Miller,et al.  Photoelectrolysis of water using thin copper gallium diselenide electrodes , 2008 .

[43]  A. Zaban,et al.  Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells , 2008 .

[44]  P. Dale,et al.  Towards sustainable materials for solar energy conversion: Preparation and photoelectrochemical characterization of Cu2ZnSnS4 , 2008 .

[45]  Bruce A. Parkinson,et al.  Combinatorial Discovery and Optimization of a Complex Oxide with Water Photoelectrolysis Activity , 2008 .

[46]  Qingliang Liao,et al.  Growth mechanism and optical properties of ZnS nanotetrapods , 2007 .

[47]  Laxmidhar Besra,et al.  A review on fundamentals and applications of electrophoretic deposition (EPD) , 2007 .

[48]  H. Sugihara,et al.  Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. , 2006, The journal of physical chemistry. B.

[49]  Bruce A. Parkinson,et al.  Combinatorial Approach to Identification of Catalysts for the Photoelectrolysis of Water , 2005 .

[50]  P. J. Sebastian,et al.  Photoelectrochemical characterization of CIGS thin films for hydrogen production , 2005 .

[51]  G. Hadjipanayis,et al.  Low-temperature synthesis of hexagonal (Wurtzite) ZnS nanocrystals. , 2004, Journal of the American Chemical Society.

[52]  O. Madelung I-III-VI 2 compounds , 2004 .

[53]  M. Steigerwald,et al.  Controlled Electrophoretic Deposition of Smooth and Robust Films of CdSe Nanocrystals , 2004 .

[54]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[55]  Stuart Licht,et al.  Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis , 2000 .

[56]  P. Sebastián,et al.  CIS and CIGS based photovoltaic structures developed from electrodeposited precursors , 1999 .

[57]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[58]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[59]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.