Triple-loop networks with arbitrarily many minimum distance diagrams

Minimum distance diagrams are a way to encode the diameter and routing information of multi-loop networks. For the widely studied case of double-loop networks, it is known that each network has at most two such diagrams and that they have a very definite form (''L-shape''). In contrast, in this paper we show that there are triple-loop networks with an arbitrarily big number of associated minimum distance diagrams. For doing this, we build-up on the relations between minimum distance diagrams and monomial ideals.

[1]  Ying Cheng,et al.  Diameters of Weighted Double Loop Networks , 1988, J. Algorithms.

[2]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[3]  Frank K. Hwang,et al.  A complementary survey on double-loop networks , 2001, Theor. Comput. Sci..

[4]  Domingo Gómez-Pérez,et al.  Cayley Digraphs of Finite Abelian Groups and Monomial Ideals , 2007, SIAM J. Discret. Math..

[5]  Bernd Sturmfels,et al.  Gröbner bases of lattices, corner polyhedra, and integer programming. , 1995 .

[6]  Edgar Martínez Moro V Jornadas de Matemática Discreta y Algorítmica , 2006 .

[7]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[8]  F. Aguiló-Gost,et al.  New dense families of triple loop networks , 1999 .

[9]  Frank K. Hwang,et al.  A survey on multi-loop networks , 2003, Theor. Comput. Sci..

[10]  Ding-Zhu Du,et al.  Doubly Linked Ring Networks , 1985, IEEE Transactions on Computers.

[11]  D. Frank Hsu,et al.  Extremal Problems in the Construction of Distributed Loop Networks , 1994, SIAM J. Discret. Math..

[12]  F. Aguiló,et al.  An efficient algorithm to find optimal double loop networks , 1995, Discret. Math..

[13]  Wen-Shiang Tang,et al.  On the existence of hyper-L triple-loop networks , 2006, Discret. Math..

[14]  Mateo Valero,et al.  Discrete Optimization Problem in Local Networks and Data Alignment , 1987, IEEE Transactions on Computers.

[15]  Michael Stillman,et al.  A theorem on refining division orders by the reverse lexicographic order , 1987 .

[16]  Chak-Kuen Wong,et al.  A Combinatorial Problem Related to Multimodule Memory Organizations , 1974, JACM.

[17]  F. Aguiló,et al.  Triple loop networks with small transmission delay , 1997, Discret. Math..

[18]  F Aguil6-Gost,et al.  New dense families of triple loop networks , 2022 .