A scanned-angle and scanned-energy photoelectron diffraction study of (√3 × √3) R30° Ag on Si(111)

[1]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[2]  J. Nogami,et al.  Reexamination of the Ag/Si(111)-√3×√3 surface by scanning tunneling microscopy , 1992 .

[3]  J. Venables,et al.  Competing processes and controlling energies at the Ag/Si(111) interface , 1992 .

[4]  J. Venables,et al.  Temperature-dependent coverage of the √3 × √3R30° structure of Ag/Si(111) , 1991 .

[5]  D. Friedman,et al.  Application of a novel multiple scattering approach to photoelectron diffraction and Auger electron diffraction , 1991 .

[6]  M. Aono,et al.  Theoretical calculations of the scanning-tunneling-microscopy images of the Si(111)√3 × √3 -Ag surface , 1991 .

[7]  C. T. Chan,et al.  Structure of the ( radical 3 times radical 3 ) R 30 degree Ag/Si(111) surface from first-principles calculations , 1991 .

[8]  Williams,et al.  Structure analysis of the Si(111) sqrt 3 x sqrt 3 R30 degrees -Ag surface. , 1991, Physical review letters.

[9]  Patel,et al.  Structure analysis of Si(111)-( sqrt 3 x sqrt 3 )R30 degrees/Ag using x-ray standing waves. , 1991, Physical review. B, Condensed matter.

[10]  T. Ishikawa,et al.  A study of the Si(111)√3 × √3- Ag surface by transmission X-ray diffraction and X-ray diffraction topography , 1991 .

[11]  R. Williams,et al.  An investigation of the Si(111)−(√3 × √3)R30°−Ag surface by Li+ impact collision ion scattering spectroscopy , 1990 .

[12]  M. Hosoya,et al.  Theory of Angle-Resolved X-Ray Photoemission by Multiple Scattering Cluster Method. II. Damped One-Electron Formulas Derived from Many-Body Theory and Application to Si(111)-(\(\sqrt{3}\times\sqrt{3}\)) Ag 3d Spectra , 1990 .

[13]  D. Friedman,et al.  An assessment of multiple-scattering effects in Auger-electron diffraction and photoelectron diffraction , 1990 .

[14]  J. Rehr,et al.  Scattering-matrix formulation of curved-wave multiple-scattering theory: Application to x-ray-absorption fine structure. , 1990, Physical review. B, Condensed matter.

[15]  F. Shoji,et al.  High-energy ion channeling study of the atomic displacement of Si(111) surfaces induced by Ag thin films , 1990 .

[16]  Friedman,et al.  Structure of ( sqrt 3 x sqrt 3)R30 degrees Ag on Si(111). , 1990, Physical review. B, Condensed matter.

[17]  D. Friedman,et al.  Final-state effects in photoelectron diffraction , 1990 .

[18]  Karlsson,et al.  Fermi-level pinning and surface-state band structure of the Si(111)-( sqrt 3 x sqrt 3)R30 degrees -Ag surface. , 1989, Physical review letters.

[19]  J. Venables,et al.  Biassed secondary electron imaging studies of Ag/Si(111) , 1989 .

[20]  K. Ho,et al.  First principles total energy calculations for the honeycomb model of the √3 × √3 Ag/Si(111) surface , 1989 .

[21]  Tromp,et al.  Noble-metal adsorption on Si(111): Medium-energy ion-scattering results for the Ag ( sqrt 3 x sqrt 3)R30 degrees reconstruction. , 1989, Physical review. B, Condensed matter.

[22]  Tong,et al.  Observation and structural determination of ( sqrt 3 x sqrt 3)R30 degrees reconstruction of the Si(111) surface. , 1989, Physical review letters.

[23]  J. V. D. Veen,et al.  The structure of Si(111)-(3×3)R30°-Ag determined by surface X-ray diffraction , 1989 .

[24]  M. Hove,et al.  Surface structure determination with forward focused electrons , 1989 .

[25]  B. Delley,et al.  Adsorption of Cu and Ag atoms on Si(111) surfaces: Local density functional determination of geometries and electronic structures , 1988 .

[26]  D. P. Woodruff,et al.  A photoelectron diffraction and nexafs study of the structure of the methoxy species (CH3O−) on Cu{100} , 1988 .

[27]  S. Mróz,et al.  Application of elastic peak electron spectroscopy (EPES) to determine inelastic mean free paths (IMFP) of electrons in copper and silver , 1988 .

[28]  Wilson,et al.  Registration and nucleation of the Ag/Si(111)( sqrt 3 x sqrt 3)R30 degrees structure by scanning tunneling microscopy. , 1987, Physical review letters.

[29]  S. Hasegawa,et al.  A study of adsorption and desorption processes of Ag on Si(111) surface by means of RHEED-TRAXS , 1987 .

[30]  Shirley,et al.  Surface structure of (22) S/Ge(111) determined by angle-resolved photoemission fine structure. , 1987, Physical review. B, Condensed matter.

[31]  T. Miyahara,et al.  Surface and bulk core-level shifts of the Si(111)√3 √3 -Ag surface: Evidence for a charged √3 √3 layer , 1987 .

[32]  C. Fadley,et al.  The analysis of photoelectron diffraction data obtained with fixed geometry and scanned photon energy , 1987 .

[33]  Wilson,et al.  Structure of the Ag/Si(111) surface by scanning tunneling microscopy. , 1987, Physical review letters.

[34]  Hamers,et al.  Local electron states and surface geometry of Si(111)- sqrt 3 sqrt 3 Ag. , 1987, Physical review letters.

[35]  Fadley,et al.  Temperature dependence of x-ray photoelectron diffraction from copper: Surface and bulk effects. , 1986, Physical review. B, Condensed matter.

[36]  Nicholls,et al.  Surface states of ordered Au, Ag, and Cu overlayers on Si(111) studied by inverse photoemission. , 1986, Physical review. B, Condensed matter.

[37]  M. Aono,et al.  Structure analysis of Ag overlayers on Si(111) by low-energy Li+ ion scattering , 1986 .

[38]  Bullock,et al.  Spherical-wave effects in photoelectron diffraction. , 1986, Physical review. B, Condensed matter.

[39]  S. Kono,et al.  X-ray photoelectron diffraction study of the atomic geometry of the surface , 1986 .

[40]  W. H. Weinberg,et al.  Low-energy electron diffraction : experiment, theory and surface structure determination , 1986 .

[41]  A. Ichimiya,et al.  Surface structure study of by incident beam rocking AES method , 1985 .

[42]  R. L. Johnson,et al.  A high flux toroidal grating monochromator for the soft X-ray region , 1985 .

[43]  Barton Jj,et al.  Curved-wave-front corrections for photoelectron scattering , 1985 .

[44]  Tong,et al.  Importance of multiple forward scattering in medium- and high-energy electron emission and/or diffraction spectroscopies. , 1985, Physical review. B, Condensed matter.

[45]  Shirley,et al.  Small-atom approximations for photoelectron scattering in the intermediate-energy range. , 1985, Physical review. B, Condensed matter.

[46]  Charles S. Fadley,et al.  Angle-resolved x-ray photoelectron spectroscopy , 1984 .

[47]  J. Stöhr,et al.  Structure of the Ag on Si(111) 7 × 7 interface by means of surface exafs , 1983 .

[48]  G. Lay,et al.  Physics and electronics of the noble-metal/elemental-semiconductor interface formation: A status report , 1983 .

[49]  S. Kono,et al.  Study of Ag/Si(111) submonolayer interface: I. Electronic structure by angle-resolved UPS , 1983 .

[50]  A. Ichimiya,et al.  Rheed intensity analysis of Si(111)7 7 and v3 v3-Ag surfacesI. Kinematic diffraction approach , 1983 .

[51]  Hanawa Teruo,et al.  A structure analysis of Ag-adsorbed Si(111) surface by LEED/CMTA , 1982 .

[52]  F. Shoji,et al.  Initial growth process and surface structure of Ag on Si(111) studied by low-energy Ion-Scattering Spectroscopy (ISS) and LEED-AES , 1981 .

[53]  S. M. Goldberg,et al.  Photoionization cross-sections for atomic orbitals with random and fixed spatial orientation , 1981 .

[54]  S. M. Goldberg,et al.  Azimuthal Anisotropy in Core-Level X-Ray Photoemission from c (2×2) Oxygen on Cu(001): Experiment and Single-Scattering Theory , 1978 .

[55]  F. Wehking,et al.  Investigation of the initial stages of growth of Ag films on Si(111)7 × 7 by a combination of LEED, AES, and UPS , 1978 .

[56]  M. A. Van Hove,et al.  Surface structure refinements of 2HMoS2, 2HNbSe2 and W(100)p(2 × 1)O via new reliability factors for surface crystallography , 1977 .

[57]  C. Fadley,et al.  X-ray photoelectron angular distributions with dispersion-compensating x-ray and electron optics , 1977 .

[58]  F. Grunthaner,et al.  Properties of oxidized silicon as determined by angular-dependent X-ray photoelectron spectroscopy , 1976 .