A Drift-Asymptotic scheme for a fluid description of plasmas in strong magnetic fields
暂无分享,去创建一个
[1] Pierre Degond,et al. An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit , 2007, J. Comput. Phys..
[2] Claudia Negulescu,et al. An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro-Macro decomposition , 2011, J. Comput. Phys..
[3] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[4] S. Hirstoaga,et al. A new fully two-dimensional conservative semi-Lagrangian method: applications on polar grids, from diocotron instability to ITG turbulence , 2014, The European Physical Journal D.
[5] Fabrice Deluzet,et al. Numerical study of the plasma tearing instability on the resistive time scale , 2015, J. Comput. Phys..
[6] M Ottaviani,et al. Effect of collisional zonal-flow damping on flux-driven turbulent transport. , 2004, Physical review letters.
[7] Jian‐Guo Liu,et al. An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .
[8] Jian-Guo Liu,et al. Analysis of an Asymptotic Preserving Scheme for the Euler-Poisson System in the Quasineutral Limit , 2008, SIAM J. Numer. Anal..
[9] M. Ottaviani,et al. A flux-coordinate independent field-aligned approach to plasma turbulence simulations , 2013, Comput. Phys. Commun..
[10] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[11] W. Horton,et al. Fluid simulation of ion pressure gradient driven drift modes , 1980 .
[12] P. Degond,et al. All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.
[13] J. Huba. NRL: Plasma Formulary , 2004 .
[14] P. Degond,et al. An asymptotic preserving scheme for a bifluid Euler-Lorentz system. , 2011 .
[15] P. Sardain,et al. Power plant conceptual studies in Europe , 2007 .
[16] Shi Jin,et al. A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..
[17] S. I. Braginskii. Transport Processes in a Plasma , 1965 .
[18] Laurent Villard,et al. A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..
[19] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[20] P. Degond. Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.
[21] R. Sudan,et al. Considerations of ion‐temperature‐gradient‐driven turbulence , 1991 .
[22] Pierre Degond,et al. An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..
[23] Philippe Ghendrih,et al. The Plasma Boundary of Magnetic Fusion Devices , 2001 .
[24] P. Kintner,et al. Spaced measurements and progress in understanding space plasma waves , 2000 .
[25] Stefaan Poedts,et al. Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2004 .
[26] Shi Jin. ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .
[27] Luc Mieussens,et al. A moving interface method for dynamic kinetic-fluid coupling , 2007, J. Comput. Phys..
[28] Christophe Besse,et al. Efficient Numerical Methods for Strongly Anisotropic Elliptic Equations , 2013, J. Sci. Comput..
[29] Pierre Degond,et al. An asymptotically stable discretization for the Euler–Poisson system in the quasi-neutral limit , 2005 .
[30] Nicolas Crouseilles,et al. Asymptotic Preserving schemes for highly oscillatory Vlasov-Poisson equations , 2012, J. Comput. Phys..
[31] F. Deluzet,et al. Numerical resolution of an anisotropic non-linear diffusion problem , 2012, 1210.0681.
[32] William Dorland,et al. Developments in the gyrofluid approach to Tokamak turbulence simulations , 1993 .
[33] Alain J. Brizard,et al. Foundations of Nonlinear Gyrokinetic Theory , 2007 .
[34] Claudia Negulescu,et al. Closure of the Strongly Magnetized Electron Fluid Equations in the Adiabatic Regime , 2016, Multiscale Model. Simul..
[35] N. Crouseilles,et al. An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. , 2011 .
[36] Fabrice Deluzet,et al. An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field , 2009, J. Comput. Phys..
[37] William Dorland,et al. Gyrofluid turbulence models with kinetic effects , 1993 .
[38] A. Arakawa. Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .
[39] W. Horton,et al. REDUCED BRAGINSKII EQUATIONS , 1993 .
[40] Giacomo Dimarco,et al. Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations , 2012, SIAM J. Numer. Anal..
[41] Lorenzo Pareschi,et al. Efficient Asymptotic Preserving Deterministic methods for the Boltzmann Equation , 2011 .
[42] Jacek Narski,et al. Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction , 2013, Comput. Phys. Commun..
[43] I. Langmuir. The Interaction of Electron and Positive Ion Space Charges in Cathode Sheaths , 1929 .
[44] Francis Filbet,et al. Analysis of an Asymptotic Preserving Scheme for Relaxation Systems , 2011 .
[45] Hailiang Liu,et al. Numerical Approximation of the Euler-Poisson-Boltzmann Model in the Quasineutral Limit , 2010, J. Sci. Comput..
[46] C. Bourdelle,et al. Global simulations of ion turbulence with magnetic shear reversal , 2001 .
[47] Guillaume Latu,et al. Comparison of Numerical Solvers for Anisotropic Diffusion Equations Arising in Plasma Physics , 2015, J. Sci. Comput..
[48] Fabrice Deluzet,et al. Asymptotic-Preserving methods and multiscale models for plasma physics , 2016, J. Comput. Phys..
[49] Fabrice Deluzet,et al. Numerical approximation of the Euler-Maxwell model in the quasineutral limit , 2011, J. Comput. Phys..
[50] Fabrice Deluzet,et al. An Asymptotic Preserving Scheme for Strongly Anisotropic Elliptic Problems , 2009, Multiscale Model. Simul..
[51] P. Degond,et al. Degenerate anisotropic elliptic problems and magnetized plasma simulations , 2010, 1010.5968.