A Drift-Asymptotic scheme for a fluid description of plasmas in strong magnetic fields

Abstract We present a numerical scheme for the ion Euler equations with Braginskii closure, in the quasi-neutral regime with an adiabatic electron response. The scheme is constructed with the aid of asymptotic-preserving (AP) techniques in order to avoid the singularity in the drift-limit. When the normalized gyro-radius tends to zero, the scheme performs the drift-limit numerically. Depending on the choice of the time step, it can resolve different physical phenomena, ranging from cyclotron motion to plasma transport or ion drifts. Since the development of AP-schemes for the Braginskii equations is in its exploratory phase, the plasma is assumed a three-dimensional slab in a uniform external magnetic field. We use the ion-temperature-gradient dispersion relation for the scheme’s verification. The promising results show that the method offers the possibility to adapt the numerical parameters to the desired resolution in the full fluid model, instead of switching to reduced models in the drift-limit.

[1]  Pierre Degond,et al.  An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit , 2007, J. Comput. Phys..

[2]  Claudia Negulescu,et al.  An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro-Macro decomposition , 2011, J. Comput. Phys..

[3]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[4]  S. Hirstoaga,et al.  A new fully two-dimensional conservative semi-Lagrangian method: applications on polar grids, from diocotron instability to ITG turbulence , 2014, The European Physical Journal D.

[5]  Fabrice Deluzet,et al.  Numerical study of the plasma tearing instability on the resistive time scale , 2015, J. Comput. Phys..

[6]  M Ottaviani,et al.  Effect of collisional zonal-flow damping on flux-driven turbulent transport. , 2004, Physical review letters.

[7]  Jian‐Guo Liu,et al.  An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .

[8]  Jian-Guo Liu,et al.  Analysis of an Asymptotic Preserving Scheme for the Euler-Poisson System in the Quasineutral Limit , 2008, SIAM J. Numer. Anal..

[9]  M. Ottaviani,et al.  A flux-coordinate independent field-aligned approach to plasma turbulence simulations , 2013, Comput. Phys. Commun..

[10]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[11]  W. Horton,et al.  Fluid simulation of ion pressure gradient driven drift modes , 1980 .

[12]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[13]  J. Huba NRL: Plasma Formulary , 2004 .

[14]  P. Degond,et al.  An asymptotic preserving scheme for a bifluid Euler-Lorentz system. , 2011 .

[15]  P. Sardain,et al.  Power plant conceptual studies in Europe , 2007 .

[16]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[17]  S. I. Braginskii Transport Processes in a Plasma , 1965 .

[18]  Laurent Villard,et al.  A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  P. Degond Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.

[21]  R. Sudan,et al.  Considerations of ion‐temperature‐gradient‐driven turbulence , 1991 .

[22]  Pierre Degond,et al.  An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..

[23]  Philippe Ghendrih,et al.  The Plasma Boundary of Magnetic Fusion Devices , 2001 .

[24]  P. Kintner,et al.  Spaced measurements and progress in understanding space plasma waves , 2000 .

[25]  Stefaan Poedts,et al.  Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2004 .

[26]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[27]  Luc Mieussens,et al.  A moving interface method for dynamic kinetic-fluid coupling , 2007, J. Comput. Phys..

[28]  Christophe Besse,et al.  Efficient Numerical Methods for Strongly Anisotropic Elliptic Equations , 2013, J. Sci. Comput..

[29]  Pierre Degond,et al.  An asymptotically stable discretization for the Euler–Poisson system in the quasi-neutral limit , 2005 .

[30]  Nicolas Crouseilles,et al.  Asymptotic Preserving schemes for highly oscillatory Vlasov-Poisson equations , 2012, J. Comput. Phys..

[31]  F. Deluzet,et al.  Numerical resolution of an anisotropic non-linear diffusion problem , 2012, 1210.0681.

[32]  William Dorland,et al.  Developments in the gyrofluid approach to Tokamak turbulence simulations , 1993 .

[33]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .

[34]  Claudia Negulescu,et al.  Closure of the Strongly Magnetized Electron Fluid Equations in the Adiabatic Regime , 2016, Multiscale Model. Simul..

[35]  N. Crouseilles,et al.  An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. , 2011 .

[36]  Fabrice Deluzet,et al.  An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field , 2009, J. Comput. Phys..

[37]  William Dorland,et al.  Gyrofluid turbulence models with kinetic effects , 1993 .

[38]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .

[39]  W. Horton,et al.  REDUCED BRAGINSKII EQUATIONS , 1993 .

[40]  Giacomo Dimarco,et al.  Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations , 2012, SIAM J. Numer. Anal..

[41]  Lorenzo Pareschi,et al.  Efficient Asymptotic Preserving Deterministic methods for the Boltzmann Equation , 2011 .

[42]  Jacek Narski,et al.  Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction , 2013, Comput. Phys. Commun..

[43]  I. Langmuir The Interaction of Electron and Positive Ion Space Charges in Cathode Sheaths , 1929 .

[44]  Francis Filbet,et al.  Analysis of an Asymptotic Preserving Scheme for Relaxation Systems , 2011 .

[45]  Hailiang Liu,et al.  Numerical Approximation of the Euler-Poisson-Boltzmann Model in the Quasineutral Limit , 2010, J. Sci. Comput..

[46]  C. Bourdelle,et al.  Global simulations of ion turbulence with magnetic shear reversal , 2001 .

[47]  Guillaume Latu,et al.  Comparison of Numerical Solvers for Anisotropic Diffusion Equations Arising in Plasma Physics , 2015, J. Sci. Comput..

[48]  Fabrice Deluzet,et al.  Asymptotic-Preserving methods and multiscale models for plasma physics , 2016, J. Comput. Phys..

[49]  Fabrice Deluzet,et al.  Numerical approximation of the Euler-Maxwell model in the quasineutral limit , 2011, J. Comput. Phys..

[50]  Fabrice Deluzet,et al.  An Asymptotic Preserving Scheme for Strongly Anisotropic Elliptic Problems , 2009, Multiscale Model. Simul..

[51]  P. Degond,et al.  Degenerate anisotropic elliptic problems and magnetized plasma simulations , 2010, 1010.5968.