Computing networks: A general framework to contrast neural and swarm cognitions

This paper presents the Computing Networks (CNs) framework. CNs are used to generalize neural and swarm architectures. Artificial neural networks, ant colony optimization, particle swarm optimization, and realistic biological models are used as examples of instantiations of CNs. The description of these architectures as CNs allows their comparison. Their differences and similarities allow the identification of properties that enable neural and swarm architectures to perform complex computations and exhibit complex cognitive abilities. In this context, the most relevant characteristics of CNs are the existence multiple dynamical and functional scales. The relationship between multiple dynamical and functional scales with adaptation, cognition (of brains and swarms) and computation is discussed.

[1]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[2]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[3]  James A. Reggia,et al.  Self-assembly of neural networks viewed as swarm intelligence , 2010, Swarm Intelligence.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  H. Simon,et al.  The sciences of the artificial (3rd ed.) , 1996 .

[6]  D. Thieffry,et al.  Modularity in development and evolution. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[7]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[8]  W. Fontana Modelling 'evo-devo' with RNA. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[9]  Carlos Gershenson,et al.  Updating Schemes in Random Boolean Networks: Do They Really Matter? , 2004, ArXiv.

[10]  Guy Theraulaz,et al.  The biological principles of swarm intelligence , 2007, Swarm Intelligence.

[11]  Ricard V. Solé,et al.  Neutrality and Robustness in Evo-Devo: Emergence of Lateral Inhibition , 2008, PLoS Comput. Biol..

[12]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Tim Kovacs,et al.  On optimal decision-making in brains and social insect colonies , 2009, Journal of The Royal Society Interface.

[14]  Carlos Gershenson,et al.  Design and Control of Self-organizing Systems , 2007 .

[15]  Duncan J. Watts,et al.  The Structure and Dynamics of Networks: (Princeton Studies in Complexity) , 2006 .

[16]  D. Pham,et al.  THE BEES ALGORITHM, A NOVEL TOOL FOR COMPLEX OPTIMISATION PROBLEMS , 2006 .

[17]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[18]  T. Vicsek,et al.  Hierarchical group dynamics in pigeon flocks , 2010, Nature.

[19]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[20]  Andrew Wuensche,et al.  Discrete Dynamical Networks and Their Attractor Basins , 1998 .

[21]  Eric Bonabeau,et al.  Evolving Ant Colony Optimization , 1998, Adv. Complex Syst..

[22]  J. Deneubourg,et al.  Functional Self-Organisation Illustrated by Inter-Nest Traffic in Ants: The Case of the Argentine Ant , 1990 .

[23]  Andries Petrus Engelbrecht,et al.  Particle swarm optimization , 2008, Scholarpedia.

[24]  Barbara Webb,et al.  Swarm Intelligence: From Natural to Artificial Systems , 2002, Connect. Sci..

[25]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[26]  A. Roli Artificial Neural Networks , 2012, Lecture Notes in Computer Science.

[27]  Jiwen Dong,et al.  Evolving Flexible Neural Networks Using Ant Programming and PSO Algorithm , 2004, ISNN.

[28]  W ReynoldsCraig Flocks, herds and schools: A distributed behavioral model , 1987 .

[29]  Carlos Gershenson,et al.  Cognitive paradigms: which one is the best? , 2004, Cognitive Systems Research.

[30]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[31]  Luca Maria Gambardella,et al.  Evolving Self-Organizing Behaviors for a Swarm-Bot , 2004, Auton. Robots.

[32]  Christian Blum,et al.  Training feed-forward neural networks with ant colony optimization: an application to pattern classification , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[33]  Mikhail Prokopenko,et al.  An information-theoretic primer on complexity, self-organization, and emergence , 2009 .

[34]  Elio Tuci,et al.  Swarm Cognition and Artificial Life , 2009, ECAL.

[35]  Diego Rasskin-Gutman,et al.  Modularity. Understanding the Development and Evolution of Natural Complex Systems , 2005 .

[36]  Debasish Ghose,et al.  Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions , 2009, Swarm Intelligence.

[37]  G. Kane Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1: Foundations, vol 2: Psychological and Biological Models , 1994 .

[38]  Juan Carlos Seck Tuoh Mora,et al.  Rule 110 Objects and Other Collision-Based Constructions , 2007, J. Cell. Autom..

[39]  Zhanna Reznikova,et al.  Animal Intelligence: From Individual to Social Cognition , 2007 .

[40]  Yaneer Bar-Yam,et al.  Multiscale variety in complex systems , 2004, Complex..

[41]  Carlos Gershenson,et al.  When Can We Call a System Self-Organizing? , 2003, ECAL.

[42]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[43]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[44]  A. M. Ranjbar,et al.  A hybrid of particle swarm and ant colony optimization algorithms for reactive power market simulation , 2006, J. Intell. Fuzzy Syst..

[45]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[46]  I. Couzin Collective cognition in animal groups , 2009, Trends in Cognitive Sciences.

[47]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[48]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[49]  D. Chialvo,et al.  How Swarms Build Cognitive Maps , 1995 .

[50]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[51]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[52]  Victor Kaptelinin,et al.  Group Cognition Computer Support for Building Collaborative Knowledge , 2007 .

[53]  Boris Ryabko,et al.  The use of ideas of Information Theory for studying "language" and intelligence in ants , 2009, Entropy.

[54]  Zhiwei Wang,et al.  Particle swarm optimization and neural network application for QSAR , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[55]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[56]  Andrew Wuensche,et al.  The global dynamics of cellular automata : an atlas of basin of attraction fields of one-dimensional cellular automata , 1992 .

[57]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[58]  R. Matthews,et al.  Ants. , 1898, Science.

[59]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[60]  Carlos Gershenson,et al.  Classification of Random Boolean Networks , 2002, ArXiv.

[61]  D. Chialvo,et al.  Pattern Formation and Functionality in Swarm Models , 1995, adap-org/9507003.

[62]  T. Seeley,et al.  Swarm cognition in honey bees , 2007, Behavioral Ecology and Sociobiology.

[63]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[64]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[65]  Christian Balkenius,et al.  Proceedings of the Third International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems. , 2004 .

[66]  John R. Koza,et al.  Hidden Order: How Adaptation Builds Complexity. , 1995, Artificial Life.

[67]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[68]  Carlos Gershenson,et al.  The World as Evolving Information , 2007, ArXiv.

[69]  M. Dorigo,et al.  1 Positive Feedback as a Search Strategy , 1991 .