Synthesis of a [6]rotaxane with singly threaded γ-cyclodextrins as a single stereoisomer

A series of hetero [4]-, [5]- and [6]rotaxanes containing both cucurbit[6]uril (CB[6]) and γ-cyclodextrin (γ-CD) as the macrocyclic components have been synthesized via a threading-followed-by-stoppering approach. Due to the orthogonal binding of CB[6] to ammonium and γ-CD to biphenylene/tetra(ethylene glycol), the [n]rotaxanes display a specific sequence of the interlocked macrocycles. In addition, despite of the asymmetry of γ-CD with respect to the orthogonal plane of the axle, only one stereoisomer of the [6]rotaxane was obtained.

[1]  C. Yee,et al.  Control over the macrocyclisation pathway and product topology in a copper-templated catenane synthesis. , 2019, Chemical communications.

[2]  Wanhua Wu,et al.  Room-temperature phosphorescent γ-cyclodextrin-cucurbit[6]uril-cowheeled [4]rotaxanes for specific sensing of tryptophan. , 2019, Chemical communications.

[3]  Jie Ji,et al.  Enhanced chiral recognition by γ-cyclodextrin-cucurbit[6]uril-cowheeled [4]pseudorotaxanes. , 2018, Chemical communications.

[4]  C. Yee,et al.  Strategies To Assemble Catenanes with Multiple Interlocked Macrocycles. , 2017, Inorganic chemistry.

[5]  Zhiqiang Yan,et al.  Enantiodifferentiation in the Photoisomerization of (Z,Z)-1,3-Cyclooctadiene in the Cavity of γ-Cyclodextrin-Curcubit[6]uril-Wheeled [4]Rotaxanes with an Encapsulated Photosensitizer. , 2017, Organic letters.

[6]  P. Kulhánek,et al.  Cooperative Binding of Cucurbit[n]urils and β-Cyclodextrin to Heteroditopic Imidazolium-Based Guests. , 2016, The Journal of organic chemistry.

[7]  Chenfeng Ke,et al.  Cooperative capture synthesis: yet another playground for copper-free click chemistry. , 2016, Chemical Society reviews.

[8]  Kai Wang,et al.  Facile syntheses of [3]-, [4]- and [6]catenanes templated by orthogonal supramolecular interactions† †Electronic supplementary information (ESI) available: Synthetic procedures, NMR, MS, HPLC and UV-Vis data. See DOI: 10.1039/c5sc04774a , 2016, Chemical science.

[9]  K. Hayashi,et al.  A doubly alkynylpyrene-threaded [4]rotaxane that exhibits strong circularly polarized luminescence from the spatially restricted excimer. , 2014, Angewandte Chemie.

[10]  G. Crini,et al.  Review: a history of cyclodextrins. , 2014, Chemical reviews.

[11]  Hao Li,et al.  Quantitative emergence of hetero[4]rotaxanes by template-directed click chemistry. , 2013, Angewandte Chemie.

[12]  E. Keinan,et al.  Bistable cucurbituril rotaxanes without stoppers. , 2012, Chemistry.

[13]  M. Brewster,et al.  Pharmaceutical applications of cyclodextrins: basic science and product development , 2010, The Journal of pharmacy and pharmacology.

[14]  Carmen González-Barreiro,et al.  A review on the use of cyclodextrins in foods , 2009 .

[15]  F. Cacialli,et al.  Cyclodextrin‐Threaded Conjugated Polyrotaxanes for Organic Electronics: The Influence of the Counter Cations , 2008 .

[16]  Y. Ko,et al.  Dynamic switching between single- and double-axial rotaxanes manipulated by charge and bulkiness of axle termini. , 2007, Organic letters.

[17]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[18]  H. Anderson,et al.  Homo- and hetero-[3]rotaxanes with two pi-systems clasped in a single macrocycle. , 2006, Journal of the American Chemical Society.

[19]  Bao-hang Han,et al.  Cyclodextrin rotaxanes and polyrotaxanes. , 2006, Chemical reviews.

[20]  Masao Kawai,et al.  Sequential formation of a ternary complex among dihexylammonium, cucurbit[6]uril, and cyclodextrin with positive cooperativity. , 2006, Organic letters.

[21]  Hiroto Murakami,et al.  A multi-mode-driven molecular shuttle: photochemically and thermally reactive azobenzene rotaxanes. , 2005, Journal of the American Chemical Society.

[22]  Mark E. Davis,et al.  Cyclodextrin-based pharmaceutics: past, present and future , 2004, Nature Reviews Drug Discovery.

[23]  Y. Takashima,et al.  One-Pot Synthesis of γ-Cyclodextrin Polyrotaxane: Trap of γ-Cyclodextrin by Photodimerization of Anthracene-Capped pseudo-Polyrotaxane , 2004 .

[24]  Takakazu Yamamoto,et al.  β‐Cyclodextrin Pseudopolyrotaxanes with π‐Conjugated Polymer Axles , 2004 .

[25]  A. Harris,et al.  Reversible Pore Block of Connexin Channels by Cyclodextrins* , 2004, Journal of Biological Chemistry.

[26]  C. Lim,et al.  Versatile formation of [2]catenane and [2]pseudorotaxane structures; threading and noncovalent stoppering by a self-assembled macrocycle. , 2004, Organic letters.

[27]  L. Szente,et al.  Cyclodextrins as food ingredients , 2004 .

[28]  F. Cacialli,et al.  Synthesis of conjugated polyrotaxanes. , 2003, Chemistry.

[29]  Jae Wook Lee,et al.  Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. , 2003, Accounts of chemical research.

[30]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[31]  J. N. Moorthy,et al.  Stereoselective Photodimerization of (E)-Stilbenes in Crystalline gamma-Cyclodextrin Inclusion Complexes. , 1999, The Journal of organic chemistry.

[32]  C. Bieniarz,et al.  Supramolecular control of photophysical properties of cyanine dyes , 1998 .

[33]  Thomas Steiner,et al.  Structures of the Common Cyclodextrins and Their Larger Analogues-Beyond the Doughnut. , 1998, Chemical reviews.

[34]  Y. Inoue,et al.  Complexation Thermodynamics of Cyclodextrins. , 1998, Chemical reviews.

[35]  J. F. Stoddart,et al.  Synthetic Cyclic Oligosaccharides. , 1998, Chemical reviews.

[36]  J. Fraser Stoddart,et al.  Cyclodextrin-Based Catenanes and Rotaxanes. , 1998, Chemical reviews.

[37]  N. Nakashima,et al.  A Light-Driven Molecular Shuttle Based on a Rotaxane , 1997 .

[38]  K. A. Connors,et al.  The Stability of Cyclodextrin Complexes in Solution. , 1997, Chemical reviews.

[39]  A. Harada,et al.  Complex formation between polyisobutylene and cyclodextrins: inversion of chain-length selectivity between .beta.-cyclodextrin and .gamma.-cyclodextrin , 1993 .

[40]  David J. Williams,et al.  The Self‐Assembly of Catenated Cyclodextrins , 1993 .

[41]  N. Nakashima,et al.  Synthesis and Spectral Characterization of a Rotaxane of β-Cyclodextrin Threaded by a 4,4′-Diaminostilbene , 1993 .

[42]  G. Wenz,et al.  Threading Cyclodextrin Rings on Polymer Chains , 1992 .

[43]  M. Kawasaki,et al.  Cyanine dye-cyclodextrin systems. Enhanced dimerization of the dye , 1987 .

[44]  H. Ogino,et al.  Synthesis and properties of rotaxane complexes. 2. Rotaxanes consisting of .alpha.-or .beta.-cyclodextrin threaded by (.mu.-.alpha.,.omega.-diaminoalkane)bis[chlorobis(ethylenediamine)cobalt(III)] complexes , 1984 .

[45]  W. L. Mock,et al.  Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis , 1983 .

[46]  Mieczysław Maciejewski,et al.  On the Structure of Beta-Cyclodextrin Polymer Adducts , 1981 .

[47]  H. Ogino Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by .alpha.,.omega.-diaminoalkanes coordinated to cobalt(III) complexes , 1981 .

[48]  T. Osa,et al.  One host–two guests complexation between γ-cyclodextrin and sodium α-naphthylacetate as shown by excimer fluorescence , 1980 .

[49]  Naoya Ogata,et al.  Novel synthesis of inclusion polyamides , 1976 .