Fermentation of extremophilic microorganisms

Abstract The cultivation of the hyperthermophile Pyrococcus furiosus , the thermoacidophile Sulfolobus shibatae and the halophile Marinococcus M52 in dialysis membrane reactors resulted in cell yields of 2.6 g 1 −1 , 114 g 1 −1 and 132 g 1 −1 (cell dry weight), respectively. In the case of P. furiosus neither hydrogen (up to 160 μmol 1 −1 ) nor the metabolic products were found to be responsible for growth cessation at a cultivation temperature of 90°C. The low cell yield at an agitation speed of above 1800 rpm demonstrates the sensitivity of P. furiosus to hydrodynamic stress. The oxygen transfer rate into culture medium at extreme temperatures was shown to be equal or even greater than that under mesophilic condition.

[1]  D. Claus,et al.  Deutsche Sammlung von Mikroorganismen, D.S.M. : German collection of microorganisms : catalogue of strains , 1977 .

[2]  T. Holme,et al.  Removal of inhibitors of bacterial growth by dialysis culture. , 1977, Journal of general microbiology.

[3]  Hans-Dieter Belitz,et al.  Lehrbuch der Lebensmittelchemie , 1982 .

[4]  J. Kristjánsson,et al.  Ecology and habitats of extremophiles , 1995, World journal of microbiology & biotechnology.

[5]  D. Prieur,et al.  Minimal Amino Acid Requirements of the Hyperthermophilic Archaeon Pyrococcus abyssi, Isolated from Deep-Sea Hydrothermal Vents , 1995, Applied and environmental microbiology.

[6]  M. Adams The metabolism of hydrogen by extremely thermophilic, sulfur-dependent bacteria , 1990 .

[7]  Thomas Sauer,et al.  Production of hydroxyectoine: high cell-density cultivation and osmotic downshock of Marinococcus strain M52 , 1995 .

[8]  S. Aiba,et al.  Reassessment of the dynamic K(L) a method. , 1984, Biotechnology and bioengineering.

[9]  Bernhard Sonnleitner,et al.  Biotechnology of Thermophilic Bacteria — Growth, Products, and Application , 1983, Microbial Activities.

[10]  A. D. Brown,et al.  Microbial water stress. , 1976, Bacteriological reviews.

[11]  E. Bonch‐Osmolovskaya,et al.  Interspecies Hydrogen Transfer in Cocultures of ThermophilicArchaea , 1991 .

[12]  A. S. Kertes,et al.  SOLUBILITY DATA SERIES , 1985 .

[13]  G. Antranikian Physiology and enzymology of thermophilic anaerobic bacteria degrading starch , 1990 .

[14]  O. Kandler Cell Wall Biochemistry and Three-Domain Concept of Life , 1993 .

[15]  R. Kelly,et al.  Extremely Thermophilic Archaebacteria: Biological and Engineering Considerations , 1988 .

[16]  R. Kelly,et al.  Regulation of Proteolytic Activity in the Hyperthermophile Pyrococcus furiosus , 1992, Applied and environmental microbiology.

[17]  M. Adams,et al.  Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus , 1993, Journal of bacteriology.

[18]  H. J. Henzler,et al.  Oxygenation of cell cultures , 1993 .

[19]  M. Peña,et al.  The influence of MAILLARD's reaction in sugar cane molasses on the kinetic fermentation parameters of Candida utilis NRRL Y‐660 , 1994 .

[20]  J. J. Nieto,et al.  Biotechnological applications and potentialities of halophilic microorganisms , 1995, World journal of microbiology & biotechnology.

[21]  A. Stams,et al.  Growth and energy conservation in batch cultures of Pyrococcus furiosus. , 1994 .

[22]  S. Knapp,et al.  The molecular chaperonin TF55 from the Thermophilic archaeon Sulfolobus solfataricus. A biochemical and structural characterization. , 1994, Journal of molecular biology.

[23]  R. Higbie,et al.  The Rate of Absorption of a Pure Gas into a Still Liquid during Short Periods of Exposure , 1935 .

[24]  Hans Friedmann,et al.  Der Einfluss der Produktgase auf die mikrobiologische Methanbildung , 1994 .

[25]  T. Hoaki,et al.  Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids , 1994, Applied and environmental microbiology.

[26]  K. Nozaki,et al.  Screening of Anaerobic Bacteria with the Ability to Decolorize Molasses Melanoidin , 1988 .

[27]  T. Hoaki,et al.  Amino Acid Requirements of Two Hyperthermophilic Archaeal Isolates from Deep-Sea Vents, Desulfurococcus Strain SY and Pyrococcus Strain GB-D , 1993, Applied and environmental microbiology.

[28]  G. Antranikian,et al.  Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms , 1995, World journal of microbiology & biotechnology.

[29]  Bernhard Sonnleitner,et al.  Advantages of using thermophiles in biotechnological processes: expectations and reality , 1983 .

[30]  F. Götz,et al.  A new dialysis fermentor for the production of high concentrations of extracellular enzymes , 1990 .

[31]  R. Herbert A perspective on the biotechnological potential of extremophiles. , 1992, Trends in biotechnology.

[32]  J. Ogbonna,et al.  Nutrient‐split feeding strategy for dialysis cultivation of Escherichia coli , 1993, Biotechnology and bioengineering.

[33]  R. Sharp,et al.  Development of defined and minimal media for the growth of the hyperthermophilic archaeon Pyrococcus furiosus Vc1 , 1997 .

[34]  S Mukund,et al.  The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway. , 1991, The Journal of biological chemistry.

[35]  V. Linek,et al.  Measurement of kLa by dynamic pressure method in pilot‐plant fermentor , 1994, Biotechnology and Bioengineering.

[36]  H. Santos,et al.  Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: Proposal of a novel glycolytic pathway based on 13C labelling data and enzyme activities , 1994 .

[37]  K. Stetter,et al.  Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms , 1995, World journal of microbiology & biotechnology.

[38]  C. Wilke,et al.  Correlation of diffusion coefficients in dilute solutions , 1955 .

[39]  John Newman,et al.  Vapor‐liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes , 1978 .