Recursively preconditioned hierarchical interpolative factorization for elliptic partial differential equations

The hierarchical interpolative factorization for elliptic partial differential equations is a fast algorithm for approximate sparse matrix inversion in linear or quasilinear time. Its accuracy can degrade, however, when applied to strongly ill-conditioned problems. Here, we propose a simple modification that can significantly improve the accuracy at no additional asymptotic cost: applying a block Jacobi preconditioner before each level of skeletonization. This dramatically limits the impact of the underlying system conditioning and enables the construction of robust and highly efficient preconditioners even at quite modest compression tolerances. Numerical examples demonstrate the performance of the new approach.

[1]  Jianlin Xia,et al.  Efficient Structured Multifrontal Factorization for General Large Sparse Matrices , 2013, SIAM J. Sci. Comput..

[2]  Jianlin Xia,et al.  Effective and Robust Preconditioning of General SPD Matrices via Structured Incomplete Factorization , 2017, SIAM J. Matrix Anal. Appl..

[3]  L. Grasedyck,et al.  Domain-decomposition Based ℌ-LU Preconditioners , 2007 .

[4]  Houman Owhadi,et al.  Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..

[5]  Jianlin Xia and Zixing Xin Effective and Robust Preconditioning of General SPD Matrices via Structured Incomplete Factorization , 2017 .

[6]  J. Dixon Estimating Extremal Eigenvalues and Condition Numbers of Matrices , 1983 .

[7]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[8]  Lexing Ying,et al.  A fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matrices , 2014, J. Comput. Phys..

[9]  Per-Gunnar Martinsson,et al.  An O(N) Direct Solver for Integral Equations on the Plane , 2013, 1303.5466.

[10]  Jianlin Xia,et al.  Randomized Sparse Direct Solvers , 2013, SIAM J. Matrix Anal. Appl..

[11]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[12]  J. Kuczy,et al.  Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992 .

[13]  Jianlin Xia,et al.  Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..

[14]  Edmond Chow,et al.  Preserving Positive Definiteness in Hierarchically Semiseparable Matrix Approximations , 2018, SIAM J. Matrix Anal. Appl..

[15]  Lexing Ying,et al.  A Recursive Skeletonization Factorization Based on Strong Admissibility , 2016, Multiscale Model. Simul..

[16]  Shivkumar Chandrasekaran,et al.  On the Numerical Rank of the Off-Diagonal Blocks of Schur Complements of Discretized Elliptic PDEs , 2010, SIAM J. Matrix Anal. Appl..

[17]  Per-Gunnar Martinsson,et al.  A direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré-Steklov operators , 2016, J. Comput. Appl. Math..

[18]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[19]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[20]  Kenneth L. Ho,et al.  Hierarchical Interpolative Factorization for Elliptic Operators: Differential Equations , 2016 .

[21]  Eric Darve,et al.  A fast block low-rank dense solver with applications to finite-element matrices , 2014, J. Comput. Phys..

[22]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[23]  Per-Gunnar Martinsson,et al.  A Direct Solver with O(N) Complexity for Variable Coefficient Elliptic PDEs Discretized via a High-Order Composite Spectral Collocation Method , 2013, SIAM J. Sci. Comput..

[24]  Artem Napov,et al.  Conditioning Analysis of Incomplete Cholesky Factorizations with Orthogonal Dropping , 2013, SIAM J. Matrix Anal. Appl..

[25]  Emmanuel Agullo,et al.  Low-Rank Factorizations in Data Sparse Hierarchical Algorithms for Preconditioning Symmetric Positive Definite Matrices , 2018, SIAM J. Matrix Anal. Appl..

[26]  Per-Gunnar Martinsson,et al.  A Fast Direct Solver for a Class of Elliptic Partial Differential Equations , 2009, J. Sci. Comput..

[27]  Eric Darve,et al.  Fast Hierarchical Solvers For Sparse Matrices Using Extended Sparsification and Low-Rank Approximation , 2015, SIAM J. Sci. Comput..

[28]  Emmanuel Agullo,et al.  Nearly optimal fast preconditioning of symmetric positive definite matrices , 2016 .

[29]  Per-Gunnar Martinsson,et al.  A direct solver with O(N) complexity for integral equations on one-dimensional domains , 2011, 1105.5372.

[30]  Eric Darve,et al.  Sparse hierarchical solvers with guaranteed convergence , 2016, International Journal for Numerical Methods in Engineering.

[31]  Lexing Ying,et al.  A fast direct solver for elliptic problems on general meshes in 2D , 2012, J. Comput. Phys..

[32]  Leslie Greengard,et al.  A Fast Direct Solver for Structured Linear Systems by Recursive Skeletonization , 2012, SIAM J. Sci. Comput..

[33]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[34]  Gene H. Golub,et al.  Matrix computations , 1983 .

[35]  Gene H. Golub,et al.  Matrix Computations, Third Edition , 1996 .

[36]  Lexing Ying,et al.  Distributed-memory hierarchical interpolative factorization , 2016, ArXiv.

[37]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[38]  Eric Darve,et al.  The Inverse Fast Multipole Method: Using a Fast Approximate Direct Solver as a Preconditioner for Dense Linear Systems , 2015, SIAM J. Sci. Comput..

[39]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[40]  Mario Bebendorf,et al.  On the spectral equivalence of hierarchical matrix preconditioners for elliptic problems , 2016, Math. Comput..

[41]  Jean-Yves L'Excellent,et al.  Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..

[42]  Jianlin Xia,et al.  Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices , 2010, SIAM J. Matrix Anal. Appl..

[43]  Ivan V. Oseledets,et al.  "Compress and eliminate" solver for symmetric positive definite sparse matrices , 2016, SIAM J. Sci. Comput..

[44]  Yousef Saad,et al.  Divide and Conquer Low-Rank Preconditioners for Symmetric Matrices , 2013, SIAM J. Sci. Comput..

[45]  Mario Bebendorf,et al.  Hierarchical matrix approximation with blockwise constraints , 2012, BIT Numerical Mathematics.

[46]  Henryk Wozniakowski,et al.  Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992, SIAM J. Matrix Anal. Appl..

[47]  Steffen Börm,et al.  Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.

[48]  Kenneth L. Ho FLAM: Fast Linear Algebra in MATLAB - Algorithms for Hierarchical Matrices , 2020, J. Open Source Softw..

[49]  V. Rokhlin,et al.  A fast direct solver for boundary integral equations in two dimensions , 2003 .