Constraint LTL satisfiability checking without automata

Abstract This paper introduces a novel technique to decide the satisfiability of formulae written in the language of Linear Temporal Logic with both future and past operators and atomic formulae belonging to constraint system D (CLTLB( D ) for short). The technique is based on the concept of bounded satisfiability, and hinges on an encoding of CLTLB( D ) formulae into QF-EU D , the theory of quantifier-free equality and uninterpreted functions combined with D . Similarly to standard LTL, where bounded model-checking and SAT-solvers can be used as an alternative to automata-theoretic approaches to model-checking, our approach allows users to solve the satisfiability problem for CLTLB( D ) formulae through SMT-solving techniques, rather than by checking the emptiness of the language of a suitable automaton. The technique is effective, and it has been implemented in our Z ot formal verification tool.

[1]  Valentin Goranko,et al.  Model-checking CTL* over flat Presburger counter systems , 2010, J. Appl. Non Class. Logics.

[2]  Thomas A. Henzinger,et al.  A really temporal logic , 1994, JACM.

[3]  Stavros Tripakis,et al.  Checking Timed Büchi Automata Emptiness Efficiently , 2005, Formal Methods Syst. Des..

[4]  Stéphane Demri,et al.  Verification of qualitative Z constraints , 2008, Theor. Comput. Sci..

[5]  Viktor Schuppan,et al.  Linear Encodings of Bounded LTL Model Checking , 2006, Log. Methods Comput. Sci..

[6]  Matteo Pradella,et al.  Bounded satisfiability checking of metric temporal logic specifications , 2013, TSEM.

[7]  Véronique Cortier,et al.  Flatness Is Not a Weakness , 2000, CSL.

[8]  Stéphane Demri,et al.  LTL over integer periodicity constraints , 2006, Theor. Comput. Sci..

[9]  Stéphane Demri LTL over Integer Periodicity Constraints: (Extended Abstract) , 2004, FoSSaCS.

[10]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[11]  Tobias Schüle,et al.  Bounded model checking of infinite state systems: exploiting the automata hierarchy , 2004, Proceedings. Second ACM and IEEE International Conference on Formal Methods and Models for Co-Design, 2004. MEMOCODE '04..

[12]  Ofer Strichman,et al.  Bounded model checking , 2003, Adv. Comput..

[13]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[14]  Marcello M. Bersani,et al.  A Tool for Deciding the Satisfiability of Continuous-Time Metric Temporal Logic , 2013, TIME.

[15]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[16]  R. BurchJ.,et al.  Symbolic model checking , 1992 .

[17]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[18]  Joël Ouaknine,et al.  Completeness and Complexity of Bounded Model Checking , 2004, VMCAI.

[19]  Jan Maluszy¿ski Verification, Model Checking, and Abstract Interpretation , 2009, Lecture Notes in Computer Science.

[20]  Edmund M. Clarke,et al.  Another Look at LTL Model Checking , 1994, CAV.

[21]  Matteo Pradella,et al.  SMT-based Verification of LTL Specification with Integer Constraints and its Application to Runtime Checking of Service Substitutability , 2010, 2010 8th IEEE International Conference on Software Engineering and Formal Methods.

[22]  S. Safra,et al.  On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[23]  Tobias Schüle,et al.  Bounded model checking of infinite state systems , 2007, Formal Methods Syst. Des..

[24]  Edmund M. Clarke,et al.  Another Look at LTL Model Checking , 1994, Formal Methods Syst. Des..

[25]  Anna Philippou,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2018, Lecture Notes in Computer Science.

[26]  Stéphane Demri,et al.  The Effects of Bounding Syntactic Resources on Presburger LTL , 2007, 14th International Symposium on Temporal Representation and Reasoning (TIME'07).

[27]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[28]  Marcello M. Bersani,et al.  Deciding the Satisfiability of MITL Specifications , 2013, GandALF.

[29]  Andrew M. Pitts,et al.  Foundations of Software Science and Computation Structures , 2015, Lecture Notes in Computer Science.

[30]  Frank Wolter,et al.  Decidable fragment of first-order temporal logics , 2000, Ann. Pure Appl. Log..

[31]  Richard Gerber,et al.  Model-checking concurrent systems with unbounded integer variables: symbolic representations, approximations, and experimental results , 1999, TOPL.

[32]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[33]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[34]  Deepak D'Souza,et al.  An Automata-Theoretic Approach to Constraint LTL , 2002, FSTTCS.

[35]  Marcello M. Bersani,et al.  Completeness of the Bounded Satisfiability Problem for Constraint LTL , 2011, RP.

[36]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[37]  Daniel Kroening,et al.  Efficient Computation of Recurrence Diameters , 2003, VMCAI.

[38]  Deepak D'Souza,et al.  An automata-theoretic approach to constraint LTL , 2002, Inf. Comput..

[39]  Stéphane Demri,et al.  Verification of Qualitative Constraints , 2005, CONCUR.

[40]  M ClarkeEdmund,et al.  Another Look at LTL Model Checking , 1997 .

[41]  Harald Ruess,et al.  Lazy Theorem Proving for Bounded Model Checking over Infinite Domains , 2002, CADE.

[42]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.