Production and characterization of supersonic carbon cluster beams

Laser vaporization of a substrate within the throat of a pulsed nozzle is used to generate a supersonic beam of carbon clusters. The neutral cluster beam is probed downstream by UV laser photoionization with time‐of‐flight mass analysis of the resulting photoions. Using graphite as the substrate, carbon clusters Cn for n=1–190 have been produced having a distinctly bimodal cluster size distribution: (i) Both even and odd clusters for Cn, 1≤n≤30; and (ii) only even clusters C2n, 20≤n≤90. The nature of the bimodal distribution, and the intensity alterations in the observed C+n signals are interpreted on the basis of cluster formation and stability arguments. Ionizing laser power dependences taken at several different photon energies are used to roughly bracket the carbon cluster ionization potentials, and, at high laser intensity, to observe the onset of multiphoton fragmentation. By treating the graphite rod with KOH, a greatly altered carbon cluster distribution with mixed carbon/potassium clusters of for...

[1]  R. C. Weast Handbook of chemistry and physics , 1973 .

[2]  N. Fürstenau Investigation of laser induced damage, evaporation and ionization with homogeneous inorganic target foils , 1981 .

[3]  J. English,et al.  Laser excitation spectra and lifetimes of Pb2 and Sn2 produced by YAG laser vaporization , 1982 .

[4]  J. B. Hopkins,et al.  Supersonic metal cluster beams of refractory metals: Spectral investigations of ultracold Mo2 , 1983 .

[5]  R. Honig MASS SPECTROMETRIC STUDY OF THE MOLECULAR SUBLIMATION OF GRAPHITE , 1954 .

[6]  M. Kertész,et al.  Ab initio Hartree–Fock crystal orbital studies. II. Energy bands of an infinite carbon chain , 1978 .

[7]  R. P. Burns,et al.  Mass Spectrometric Study of Carbon Vapor , 1959 .

[8]  B. Feuerbacher,et al.  Experimental Investigation of the Band Structure of Graphite , 1971 .

[9]  A. Kaldor,et al.  Photoionization measurements on isolated iron-atom clusters , 1983 .

[10]  A. G. Whittaker Carbon: A New View of Its High-Temperature Behavior , 1978, Science.

[11]  P. Joyes,et al.  Secondary emission of molecular ions from light-element targets , 1973 .

[12]  D. Ewing,et al.  Structures and properties of linear Cn molecules , 1982 .

[13]  D. Briggs,et al.  Handbook of x-ray and ultraviolet photoelectron spectroscopy , 1977 .

[14]  Roald Hoffmann,et al.  Extended hückel theory—v : Cumulenes, polyenes, polyacetylenes and cn , 1966 .

[15]  R. Smalley,et al.  Spectral narrowing and infrared laser fragmentation of jet‐cooled UO2(hfaa)2 TMP and UO2(hfaa)2 THF: Volatile uranyl compounds , 1982 .

[16]  S. Peyerimhoff,et al.  Configuration interaction calculation of the potential curves for the C3 molecule in its ground and lowest-lying Πu states , 1977 .

[17]  S. Gupta,et al.  Observation and atomization energies of the gaseous uranium carbides, UC, UC2, UC3, UC4, UC5, and UC6 by high temperature mass spectrometry , 1979 .

[18]  F. Hillenkamp,et al.  Laser-induced positive and negative molecular ions from thin carbon foils , 1979 .

[19]  D. E. Powers,et al.  Laser production of supersonic metal cluster beams , 1981 .

[20]  H. Hintenberger,et al.  Notizen: Die Periodizitäten in den Häufigkeitsverteilungen der positiv und negativ geladenen vielatomigen Kohlenstoffmolekülionen Cn+ und Cn- im Hochfrequenzfunken zwischen Graphitelektroden , 1963 .

[21]  A. Goresy,et al.  A New Allotropic Form of Carbon from the Ries Crater , 1968, Science.