On the slow dynamics for the Cahn–Hilliard equation in one space dimension

We study the limiting behaviour of the solution of the Cahn-Hilliard equation using ‘energy-type methods'. We assume that the initial data has a ‘transition layer structure’, i.e. uϵ ≈ ± 1 except near finitely many transition points. We show that, in the limit as ϵ → 0, the solution maintains its transition layer structure, and the transition layers move slower than any power of ϵ.

[1]  J. Carr,et al.  Metastable patterns in solutions of ut = ϵ2uxx − f(u) , 1989 .

[2]  Jack K. Hale,et al.  Slow-motion manifolds, dormant instability, and singular perturbations , 1989 .

[3]  Stephan Luckhaus,et al.  The Gibbs-Thompson relation within the gradient theory of phase transitions , 1989 .

[4]  Christopher P. Grant SPINODAL DECOMPOSITION FOR THE CAHN-HILLIARD EQUATION , 1993 .

[5]  Robert V. Kohn,et al.  Local minimisers and singular perturbations , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  F. Morgan Geometric Measure Theory: A Beginner's Guide , 1988 .

[7]  Zheng Songmu,et al.  Asymptotic behavior of solution to the Cahn-Hillard equation , 1986 .

[8]  L. Modica,et al.  Gradient theory of phase transitions with boundary contact energy , 1987 .

[9]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[11]  A geometric approach to the dynamics of ut = ε2uξξ + f(u) for small ε , 1990 .

[12]  P. Sternberg The effect of a singular perturbation on nonconvex variational problems , 1988 .

[13]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[14]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .

[15]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[16]  Robert V. Kohn,et al.  On the slowness of phase boundary motion in one space dimension , 1990 .

[17]  David J. Eyre,et al.  Systems of Cahn-Hilliard Equations , 1993, SIAM J. Appl. Math..

[18]  Peter W. Bates,et al.  Spectral comparison principles for the Cahn-Hilliard and phase-field equations, and time scales for coarsening , 1990 .

[19]  M. Gurtin,et al.  Structured phase transitions on a finite interval , 1984 .

[20]  Peter W. Bates,et al.  Slow motion for the Cahn-Hilliard equation in one space dimension , 1991 .