Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations
暂无分享,去创建一个
Fabrice Deluzet | Claudia Negulescu | Pierre Degond | Alexei Lozinski | Jacek Narski | P. Degond | A. Lozinski | F. Deluzet | J. Narski | C. Negulescu
[1] Thierry Gallouët,et al. A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis , 2007 .
[2] Sidney L. Ossakow,et al. Three‐dimensional nonlinear evolution of equatorial ionospheric spread‐F bubbles , 2003 .
[3] Jens Markus Melenk,et al. hp-Finite Element Methods for Singular Perturbations , 2002 .
[4] Kenro Miyamoto,et al. Controlled Fusion and Plasma Physics , 2006 .
[5] T. Manku,et al. Electrical properties of silicon under nonuniform stress , 1993 .
[6] Timothy J. Williams,et al. A Numerical Simulation of Groundwater Flow and Contaminant Transport on the CRAY T3D and C90 Supercomputers , 1999, Int. J. High Perform. Comput. Appl..
[7] Dimits. Fluid simulations of tokamak turbulence in quasiballooning coordinates. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[8] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[9] M. Ottaviani,et al. An alternative approach to field-aligned coordinates for plasma turbulence simulations , 2010, 1002.0748.
[10] P. Degond,et al. A MODEL HIERARCHY FOR IONOSPHERIC PLASMA MODELING , 2004 .
[11] L. S. Pontryagin,et al. Ordinary Differential Equations , 1963 .
[12] Prateek Sharma,et al. Preserving monotonicity in anisotropic diffusion , 2007, J. Comput. Phys..
[13] Fabrice Deluzet,et al. An Asymptotic Preserving Scheme for Strongly Anisotropic Elliptic Problems , 2009, Multiscale Model. Simul..
[14] S. Hamada,et al. Hydromagnetic equilibria and their proper coordinates , 1962 .
[15] David P. Stern,et al. Geomagnetic Euler potentials , 1967 .
[16] Michael C. Kelley,et al. Mid-latitude ionospheric fluctuation spectra due to secondary E×B instabilities , 2004 .
[17] Xiangchu Feng,et al. Anisotropic Diffusion with Nonlinear Structure Tensor , 2008, Multiscale Model. Simul..
[18] X. Garbet,et al. Computing ITG turbulence with a full-f semi-Lagrangian code , 2008 .
[19] Gabriel Wittum,et al. Robust Schur complement method for strongly anisotropic elliptic equations , 1999, Numer. Linear Algebra Appl..
[20] Jonathan J. Hu,et al. A new smoothed aggregation multigrid method for anisotropic problems , 2007, Numer. Linear Algebra Appl..
[21] Ignacio M. Llorente,et al. Robust multigrid smoothers for three dimensional elliptic equations with strong anisotropies , 1998 .
[22] A. Boozer. Establishment of magnetic coordinates for a given magnetic field , 1982 .
[23] Gabriel Wittum,et al. Robust Schur complement method for strongly anisotropic elliptic equations , 1999 .
[24] Christophe Le Potier,et al. Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés , 2005 .
[25] W. D. D'haeseleer,et al. Flux coordinates and magnetic field structure : a guide to a fundamental tool of plasma theory , 1991 .
[26] Fabrice Deluzet,et al. Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality , 2010, J. Comput. Phys..
[27] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[28] Gregory W. Hammett,et al. Field‐aligned coordinates for nonlinear simulations of tokamak turbulence , 1995 .
[29] Patrick Amestoy,et al. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..
[30] Joachim Weickert,et al. Anisotropic diffusion in image processing , 1996 .
[31] M. Shashkov,et al. The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes , 2006 .
[32] Y. Igitkhanov,et al. Fluid Description of Edge Plasma Transport in a Non-Orthogonal Coordinate System , 1994 .
[33] Pierre Degond,et al. An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit , 2007, J. Comput. Phys..
[34] L. Garrigues,et al. Physics, simulation and diagnostics of Hall effect thrusters , 2008 .
[35] V. Rozhansky,et al. Poloidal and toroidal flows in tokamak plasma near magnetic islands , 2004 .
[36] Luis Chacon,et al. An optimal, parallel, fully implicit Newton–Krylov solver for three-dimensional viscoresistive magnetohydrodynamicsa) , 2008 .
[37] Y. Notay. An aggregation-based algebraic multigrid method , 2010 .
[38] L. Giraud,et al. Schur complement preconditioners for anisotropic problems , 1999 .
[39] M. J. Keskinen,et al. Nonlinear theory of the E × B instability with an inhomogeneous electric field , 1984 .
[40] Daniil Svyatskiy,et al. A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems , 2009, J. Comput. Phys..
[41] Fabrice Deluzet,et al. An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field , 2009, J. Comput. Phys..
[42] Sibylle Günter,et al. Modelling of heat transport in magnetised plasmas using non-aligned coordinates , 2005 .