JeLLyFysh-Version1.0 - a Python application for all-atom event-chain Monte Carlo

We present JeLLyFysh-Version1.0, an open-source Python application for event-chain Monte Carlo (ECMC), an event-driven irreversible Markov-chain Monte Carlo algorithm for classical N-body simulations in statistical mechanics, biophysics and electrochemistry. The application's architecture closely mirrors the mathematical formulation of ECMC. Local potentials, long-ranged Coulomb interactions and multi-body bending potentials are covered, as well as bounding potentials and cell systems including the cell-veto algorithm. Configuration files illustrate a number of specific implementations for interacting atoms, dipoles, and water molecules.

[1]  Werner Krauth,et al.  Two-dimensional melting: from liquid-hexatic coexistence to continuous transitions. , 2014, Physical review letters.

[2]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[3]  Werner Krauth,et al.  Cell-veto Monte Carlo algorithm for long-range systems. , 2016, Physical review. E.

[4]  F. Ding,et al.  Ab initio folding of proteins with all-atom discrete molecular dynamics. , 2008, Structure.

[5]  Werner Krauth,et al.  Event-chain Monte Carlo algorithms for hard-sphere systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Werner Krauth,et al.  Two-step melting in two dimensions: first-order liquid-hexatic transition. , 2011, Physical review letters.

[7]  Ze Lei,et al.  Event-chain Monte Carlo with factor fields. , 2019, Physical review. E.

[8]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[9]  Michael M. McKerns,et al.  Building a Framework for Predictive Science , 2012, SciPy.

[10]  J. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  Werner Krauth,et al.  Generalized event-chain Monte Carlo: constructing rejection-free global-balance algorithms from infinitesimal steps. , 2013, The Journal of chemical physics.

[12]  Oliver Beckstein,et al.  MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations , 2016, SciPy.

[13]  Werner Krauth,et al.  All-atom computations with irreversible Markov chains. , 2018, The Journal of chemical physics.

[14]  S. Miller,et al.  Event-driven molecular dynamics in parallel , 2004 .

[15]  Anna Walsh STUDIES IN MOLECULAR DYNAMICS , 1965 .

[16]  Martin C. Herbordt,et al.  Parallel discrete molecular dynamics simulation with speculation and in-order commitment , 2011, J. Comput. Phys..

[17]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[18]  P. Fearnhead,et al.  Piecewise deterministic Markov processes for scalable Monte Carlo on restricted domains , 2017, 1701.04244.

[19]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[20]  E A J F Peters,et al.  Rejection-free Monte Carlo sampling for general potentials. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Stefan Schaefer,et al.  Testing the event-chain algorithm in asymptotically free models , 2018, Physical Review D.

[22]  Werner Krauth,et al.  Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium. , 2017, Physical review letters.

[23]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[24]  Werner Krauth,et al.  Event-chain algorithm for the Heisenberg model: Evidence for z≃1 dynamic scaling. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  F. Ding,et al.  Discrete molecular dynamics , 2012 .

[26]  Radford M. Neal,et al.  ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .

[27]  Ze Lei,et al.  Irreversible Markov chains in spin models: Topological excitations , 2017 .

[28]  Nikolay V Dokholyan,et al.  Applications of Discrete Molecular Dynamics in biology and medicine. , 2016, Current opinion in structural biology.

[29]  Feng Ding,et al.  Discrete molecular dynamics: an efficient and versatile simulation method for fine protein characterization. , 2012, The journal of physical chemistry. B.

[30]  J. W. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. II. Equivalence of boundary conditions , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  Ze Lei,et al.  Mixing and perfect sampling in one-dimensional particle systems , 2018, EPL (Europhysics Letters).

[32]  G. Voth,et al.  Flexible simple point-charge water model with improved liquid-state properties. , 2006, The Journal of chemical physics.

[33]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[34]  Alastair J. Walker,et al.  An Efficient Method for Generating Discrete Random Variables with General Distributions , 1977, TOMS.

[35]  Leo Lue,et al.  Exact on-event expressions for discrete potential systems. , 2010, The Journal of chemical physics.

[36]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[37]  W. Krauth,et al.  Sampling from a polytope and hard-disk Monte Carlo , 2013, 1301.4901.

[38]  Jan Kierfeld,et al.  Event-chain Monte Carlo algorithms for three- and many-particle interactions , 2016, 1611.09098.

[39]  Martin C. Herbordt,et al.  Parallel Discrete Event Simulation of Molecular Dynamics Through Event-Based Decomposition , 2009, 2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors.