Miniaturized multiple Fourier-horn ultrasonic droplet generators for biomedical applications.

Here we report micro-electro-mechanical system (MEMS)-based miniaturized silicon ultrasonic droplet generators of a new and simple nozzle architecture with multiple Fourier horns in resonance but without a central channel. The centimetre-sized nozzles operate at one to two MHz and a single vibration mode which readily facilitates temporal instability of Faraday waves to produce monodisperse droplets. Droplets with diameter range 2.2-4.6 μm are produced at high throughput of 420 μl min(-1) and very low electrical drive power of 80 mW. We also report the first theoretical prediction of the droplet diameter. The resulting MHz ultrasonic devices possess important advantages and demonstrate superior performance over earlier devices with a central channel and thus have high potential for biomedical applications such as efficient and effective delivery of inhaled medications and encapsulated therapy to the lung.

[1]  J. Leiter,et al.  CO2 chemosensitivity in Helix aspersa: three potassium currents mediate pH-sensitive neuronal spike timing. , 2007, American journal of physiology. Cell physiology.

[2]  O. Usmani,et al.  Regional Lung Deposition and Bronchodilator Response as a Function of β2-Agonist Particle Size , 2005 .

[3]  Yu L. Song,et al.  Ultrasonic atomization using MHz silicon-based multiple-Fourier horn nozzles , 2006 .

[4]  L. Rayleigh On the Capillary Phenomena of Jets , 1879 .

[5]  Félix Barreras,et al.  Transient high-frequency ultrasonic water atomization , 2002 .

[6]  Peter R. Byron,et al.  Inhaling medicines: delivering drugs to the body through the lungs , 2007, Nature Reviews Drug Discovery.

[7]  T. Y. Wu,et al.  Observation of a standing kink cross wave parametrically excited , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[8]  R. Condos,et al.  Lung deposition and respirable mass during wet nebulization. , 2003, Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine.

[9]  C. S. Tsai,et al.  The role of capillary waves in two-fluid atomization , 1997 .

[10]  Enrique Tirapegui,et al.  Faraday's Instability for Viscous Fluids , 1997 .

[11]  J. D. Bassett,et al.  Observations concerning the mechanism of atomisation in an ultrasonic fountain , 1976 .

[12]  N. F. de Rooij,et al.  Characterisation of a fL droplet generator for inhalation drug therapy , 2000 .

[13]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[14]  J. Heyder,et al.  Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. , 2004, Proceedings of the American Thoracic Society.

[15]  Ning Wang,et al.  Silicon-based megahertz ultrasonic nozzles for production of monodisperse micrometer-sized droplets , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[16]  E. Eisner,et al.  Design of Sonic Amplitude Transformers for High Magnification , 1963 .

[17]  Lord Rayleigh F.R.S. VII. On the crispations of fluid resting upon a vibrating support , 1883 .

[18]  K. Kumar Linear theory of Faraday instability in viscous liquids , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  G. Whitesides,et al.  Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. , 2006, Lab on a chip.

[20]  Andrei G. Fedorov,et al.  Micromachined ultrasonic droplet generator based on a liquid horn structure , 2004 .

[21]  Paul A Dayton,et al.  On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. , 2007, Lab on a chip.

[22]  F Levent Degertekin,et al.  Electrosonic ejector microarray for drug and gene delivery , 2008, Biomedical microdevices.

[23]  Leslie Y Yeo,et al.  Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. , 2009, Lab on a chip.

[24]  A. Wilson,et al.  Effect of canister temperature on performance of metered-dose inhalers. , 1991, The American review of respiratory disease.

[25]  B. Khuri-Yakub,et al.  Nozzleless droplet formation with focused acoustic beams , 1989 .

[26]  N Lotan,et al.  Large porous particles for pulmonary drug delivery. , 1997, Science.

[27]  Butrus T. Khuri-Yakub,et al.  Micromachined droplet ejector arrays , 2002 .

[28]  J. Heyes,et al.  Lipid encapsulation enables the effective systemic delivery of polyplex plasmid DNA. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[29]  A. Yule,et al.  On droplet formation from capillary waves on a vibrating surface , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  G. Smaldone,et al.  Predicting aerosol deposition during neonatal ventilation: feasibility of bench testing , 1994 .

[31]  Diane M. Henderson,et al.  PARAMETRICALLY FORCED SURFACE WAVES , 1990 .

[32]  Henderik W Frijlink,et al.  Changes in performance of the Pari eFlow rapid and Pari LC Plus during 6 months use by CF patients. , 2009, Journal of aerosol medicine and pulmonary drug delivery.

[33]  C. Tsai,et al.  Ultrasound-modulated twin-fluid atomization of a liquid jet , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[34]  L. Rayleigh,et al.  The theory of sound , 1894 .

[35]  Robert Langer,et al.  Drugs on Target , 2001, Science.

[36]  H. Hentschel,et al.  Breaking Faraday Waves: Critical Slowing of Droplet Ejection Rates , 1999 .

[37]  Andrei G. Fedorov,et al.  Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualization and scaling , 2005 .

[38]  Robert Langer,et al.  Small-scale systems for in vivo drug delivery , 2003, Nature Biotechnology.

[39]  Robert Langer,et al.  Advances in Biomaterials, Drug Delivery, and Bionanotechnology , 2003 .

[40]  S. Tsai,et al.  Ultrasonic spray pyrolysis for nanoparticles synthesis , 2004 .

[41]  T. K. Tseng,et al.  High-frequency, silicon-based ultrasonic nozzles using multiple Fourier horns , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[42]  A. Coates,et al.  Rapid pulmonary delivery of inhaled tobramycin for Pseudomonas infection in cystic fibrosis: A pilot project , 2008, Pediatric pulmonology.

[43]  Michael Faraday,et al.  XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces , 1831, Philosophical Transactions of the Royal Society of London.

[44]  K. Taylor,et al.  Ultrasonic nebulisers for pulmonary drug delivery , 1997 .

[45]  E. S. Kim,et al.  Self-focused high frequency ultrasonic transducers based on ZnO piezoelectric films , 2007 .

[46]  Sadayuki Ueha,et al.  Influence of the vibrating system of a multipinhole‐plate ultrasonic nebulizer on its performance , 1986 .

[47]  Eun Sok Kim,et al.  Micromachined acoustic-wave liquid ejector , 2001 .