Monopathogenic vs multipathogenic explanations of pemphigus pathophysiology

This viewpoint highlights major, partly controversial concepts about the pathogenesis of pemphigus. The monopathogenic theory explains intra‐epidermal blistering through the “desmoglein (Dsg) compensation” hypothesis, according to which an antibody‐dependent disabling of Dsg 1‐ and/or Dsg 3‐mediated cell–cell attachments of keratinocytes (KCs) is sufficient to disrupt epidermal integrity and cause blistering. The multipathogenic theory explains intra‐epidermal blistering through the “multiple hit” hypothesis stating that a simultaneous and synchronized inactivation of the physiological mechanisms regulating and/or mediating intercellular adhesion of KCs is necessary to disrupt epidermal integrity. The major premise for a multipathogenic theory is that a single type of autoantibody induces only reversible changes, so that affected KCs can recover due to a self‐repair. The damage, however, becomes irreversible when the salvage pathway and/or other cell functions are altered by a partnering autoantibody and/or other pathogenic factors. Future studies are needed to (i) corroborate these findings, (ii) characterize in detail patient populations with non‐Dsg‐specific autoantibodies, and (iii) determine the extent of the contribution of non‐Dsg antibodies in disease pathophysiology.

[1]  C. Kelly,et al.  Serum and salivary IgG and IgA antibodies to desmoglein 3 in mucosal pemphigus vulgaris , 2016, The British journal of dermatology.

[2]  W. Robinson,et al.  Multiplexed autoantigen microarrays identify HLA as a key driver of anti-desmoglein and -non-desmoglein reactivities in pemphigus , 2016, Proceedings of the National Academy of Sciences.

[3]  Y. Boo,et al.  Antimelanogenic effects of luteolin 7‐sulfate isolated from Phyllospadix iwatensis Makino , 2016, The British journal of dermatology.

[4]  Y. Tokura,et al.  Epitope analysis of antidesmoglein 1 autoantibodies from patients with pemphigus foliaceus across different activity stages , 2016, The British journal of dermatology.

[5]  J. Waschke,et al.  Loss of Desmoglein Binding Is Not Sufficient for Keratinocyte Dissociation in Pemphigus. , 2015, The Journal of investigative dermatology.

[6]  M. Pittelkow,et al.  Pseudo pemphigus phenotypes in mice with inactivated desmoglein 3: further insight to the complexity of pemphigus pathophysiology. , 2015, The American journal of pathology.

[7]  Yumay Chen,et al.  Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis. , 2015, International immunopharmacology.

[8]  Yumay Chen,et al.  Critical Role of the Neonatal Fc Receptor (FcRn) in the Pathogenic Action of Antimitochondrial Autoantibodies Synergizing with Anti-desmoglein Autoantibodies in Pemphigus Vulgaris* , 2015, The Journal of Biological Chemistry.

[9]  A. Sinha,et al.  Detailed profiling of anti-desmoglein autoantibodies identifies anti-Dsg1 reactivity as a key driver of disease activity and clinical expression in pemphigus vulgaris , 2015, Autoimmunity.

[10]  E. Müller,et al.  Preclinical Studies Identify Non-Apoptotic Low-Level Caspase-3 as Therapeutic Target in Pemphigus Vulgaris , 2015, PloS one.

[11]  J. Rathmell,et al.  A spontaneous deletion within the desmoglein 3 extracellular domain of mice results in hypomorphic protein expression, immunodeficiency, and a wasting disease phenotype. , 2015, The American journal of pathology.

[12]  R. Holmdahl,et al.  Pathogenic IgG Antibodies against Desmoglein 3 in Pemphigus Vulgaris Are Regulated by HLA-DRB1*04:02–Restricted T Cells , 2014, The Journal of Immunology.

[13]  M. Jonkman,et al.  No evidence of apoptotic cells in pemphigus acantholysis. , 2014, The Journal of investigative dermatology.

[14]  D. Zillikens,et al.  Specific immunoadsorption of pathogenic autoantibodies in pemphigus requires the entire ectodomains of desmogleins , 2014, Experimental dermatology.

[15]  N. Cirillo,et al.  Pemphigus vulgaris autoimmune globulin induces Src-dependent tyrosine-phosphorylation of plakophilin 3 and its detachment from desmoglein 3 , 2014, Autoimmunity.

[16]  K. Amber,et al.  Autoreactive T cells in the immune pathogenesis of pemphigus vulgaris , 2013, Experimental dermatology.

[17]  O. Sarig,et al.  Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting , 2013, Nature Genetics.

[18]  Sally E. Ward,et al.  Autoantibody depletion ameliorates disease in murine experimental autoimmune encephalomyelitis , 2013, mAbs.

[19]  Yumay Chen,et al.  Mechanisms of Mitochondrial Damage in Keratinocytes by Pemphigus Vulgaris Antibodies* , 2013, The Journal of Biological Chemistry.

[20]  M. Camilleri,et al.  Pemphigus Vulgaris Autoantibody Profiling by Proteomic Technique , 2013, PloS one.

[21]  K. Sardana,et al.  Is there an emergent need to modify the desmoglein compensation theory in pemphigus on the basis of Dsg ELISA data and alternative pathogenic mechanisms? , 2013, The British journal of dermatology.

[22]  G. Harms,et al.  Peptide-mediated desmoglein 3 crosslinking prevents pemphigus vulgaris autoantibody-induced skin blistering. , 2013, The Journal of clinical investigation.

[23]  Eva Hartlieb,et al.  Desmoglein 2 Is Less Important than Desmoglein 3 for Keratinocyte Cohesion , 2013, PloS one.

[24]  Y. Aoyama,et al.  Detection of antibodies against the non‐calcium‐dependent epitopes of desmoglein 3 in pemphigus vulgaris and their pathogenic significance , 2012, The British journal of dermatology.

[25]  A. Marconi,et al.  Apoptotic pathways in the pathogenesis of pemphigus: targets for new therapies. , 2012, Current pharmaceutical biotechnology.

[26]  S. Rosset,et al.  Population-specific association between a polymorphic variant in ST18, encoding a pro-apoptotic molecule, and pemphigus vulgaris. , 2012, The Journal of investigative dermatology.

[27]  H. Koga,et al.  Epitope spreading is rarely found in pemphigus vulgaris by large-scale longitudinal study using desmoglein 2-based swapped molecules. , 2012, The Journal of investigative dermatology.

[28]  A. Mulder,et al.  Low‐dose rituximab is effective in pemphigus , 2012, The British journal of dermatology.

[29]  A. Sinha Constructing immunoprofiles to deconstruct disease complexity in pemphigus , 2012, Autoimmunity.

[30]  D. Garrod,et al.  An adult passive transfer mouse model to study desmoglein 3 signaling in pemphigus vulgaris , 2011, The Journal of investigative dermatology.

[31]  A. Shimizu,et al.  Pathogenic relevance of IgG and IgM antibodies against desmoglein 3 in blister formation in pemphigus vulgaris. , 2011, The American journal of pathology.

[32]  R. Ober,et al.  Neonatal Fc Receptor Blockade by Fc Engineering Ameliorates Arthritis in a Murine Model , 2011, The Journal of Immunology.

[33]  G. M. Rosa,et al.  ACE inhibitors can induce circulating antibodies directed to antigens of the superficial epidermal cells , 2011, Archives of Dermatological Research.

[34]  S. Grando Pemphigus autoimmunity: Hypotheses and realities , 2011, Autoimmunity.

[35]  D. Molina,et al.  New targets of pemphigus vulgaris antibodies identified by protein array technology , 2011, Experimental dermatology.

[36]  R. Eming,et al.  IgG autoantibodies against desmocollin 3 in pemphigus sera induce loss of keratinocyte adhesion. , 2011, The American journal of pathology.

[37]  M. Amagai,et al.  Autoimmunity to desmocollin 3 in pemphigus vulgaris. , 2010, The American journal of pathology.

[38]  D. Siegel,et al.  Homologous regions of autoantibody heavy chain complementarity-determining region 3 (H-CDR3) in patients with pemphigus cause pathogenicity. , 2010, The Journal of clinical investigation.

[39]  E. Bröcker,et al.  Novel ELISA systems for antibodies to desmoglein 1 and 3: correlation of disease activity with serum autoantibody levels in individual pemphigus patients , 2010, Experimental dermatology.

[40]  Y. Aoyama What’s new in i.v. immunoglobulin therapy and pemphigus: High‐dose i.v. immunoglobulin therapy and its mode of action for treatment of pemphigus , 2010, The Journal of dermatology.

[41]  W. Uter,et al.  Clinical activity of pemphigus vulgaris relates to IgE autoantibodies against desmoglein 3. , 2010, Clinical immunology.

[42]  M. Chua,et al.  p38MAPK Signaling and Desmoglein-3 Internalization Are Linked Events in Pemphigus Acantholysis* , 2010, The Journal of Biological Chemistry.

[43]  K. Green,et al.  Desmosomes at a glance , 2009, Journal of Cell Science.

[44]  A. Peserico,et al.  Detection of Autoantibodies against Recombinant Desmoglein 1 and 3 Molecules in Patients with Pemphigus vulgaris: Correlation with Disease Extent at the Time of Diagnosis and during Follow-Up , 2009, Clinical & developmental immunology.

[45]  S. Grando,et al.  Antimitochondrial Autoantibodies in Pemphigus Vulgaris , 2009, The Journal of Biological Chemistry.

[46]  D. Siegel,et al.  Update on the cloning of monoclonal anti-desmoglein antibodies from human pemphigus patients: implications for targeted therapy. , 2009, Veterinary dermatology.

[47]  B. Pelacho,et al.  An imbalance in Akt/mTOR is involved in the apoptotic and acantholytic processes in a mouse model of pemphigus vulgaris , 2009, Experimental dermatology.

[48]  M. Pittelkow,et al.  Apoptolysis: a novel mechanism of skin blistering in pemphigus vulgaris linking the apoptotic pathways to basal cell shrinkage and suprabasal acantholysis , 2009, Experimental dermatology.

[49]  J. Waschke,et al.  Apoptosis in pemphigus. , 2009, Autoimmunity reviews.

[50]  M. Chua,et al.  Biphasic Activation of p38MAPK Suggests That Apoptosis Is a Downstream Event in Pemphigus Acantholysis* , 2009, Journal of Biological Chemistry.

[51]  H. Mouquet,et al.  ELISA testing of anti-desmoglein 1 and 3 antibodies in the management of pemphigus. , 2009, Archives of dermatology.

[52]  Clifford M. Babbey,et al.  Neonatal Fc receptor mediates internalization of Fc in transfected human endothelial cells. , 2008, Molecular biology of the cell.

[53]  Jiangli Chen,et al.  Loss of desmocollin 3 in mice leads to epidermal blistering , 2008, Journal of Cell Science.

[54]  T. Nishikawa,et al.  Anti‐desmoglein IgG autoantibodies in patients with pemphigus in remission , 2008, Journal of the European Academy of Dermatology and Venereology : JEADV.

[55]  D. Zillikens,et al.  Neonatal Fc receptor deficiency protects from tissue injury in experimental epidermolysis bullosa acquisita , 2008, Journal of Molecular Medicine.

[56]  S. Grando,et al.  Differential Coupling of M1 Muscarinic and α7 Nicotinic Receptors to Inhibition of Pemphigus Acantholysis* , 2008, Journal of Biological Chemistry.

[57]  M. Lanza,et al.  The most widespread desmosomal cadherin, desmoglein 2, is a novel target of caspase 3‐mediated apoptotic machinery , 2008, Journal of cellular biochemistry.

[58]  J. Narbutt,et al.  Circulating pemphigus autoantibodies in healthy relatives of pemphigus patients: coincidental phenomenon with a risk of disease development? , 2007, Archives of Dermatological Research.

[59]  S. Grando,et al.  Desmoglein Versus Non-desmoglein Signaling in Pemphigus Acantholysis , 2007, Journal of Biological Chemistry.

[60]  A. Bitonti,et al.  Amelioration of Experimental Autoimmune Myasthenia Gravis in Rats by Neonatal FcR Blockade , 2007, The Journal of Immunology.

[61]  N. Cirillo,et al.  Caspase‐dependent cleavage of desmoglein 1 depends on the apoptotic stimulus , 2007, The British journal of dermatology.

[62]  B. Qaqish,et al.  Prevalence of anti-desmoglein-3 antibodies in endemic regions of Fogo selvagem in Brazil. , 2006, The Journal of investigative dermatology.

[63]  P. Hu,et al.  p38MAPK inhibition prevents disease in pemphigus vulgaris mice , 2006, Proceedings of the National Academy of Sciences.

[64]  J. Sanches,et al.  Clinical and serological follow‐up studies of endemic pemphigus foliaceus (fogo selvagem) in Western Parana, Brazil (2001–2002) , 2006, The British journal of dermatology.

[65]  J. Bystryn,et al.  Sensitivity of indirect immunofluorescence and ELISA in detecting intercellular antibodies in endemic pemphigus foliaceus (Fogo Selvagem) , 2006, International journal of dermatology.

[66]  Vinod K. Sharma,et al.  Evaluation of desmoglein enzyme‐linked immunosorbent assay (ELISA) in Indian patients with pemphigus vulgaris , 2006, International journal of dermatology.

[67]  G. Elgart,et al.  Antibodies against desmoglein 1 in healthy subjects in endemic and nonendemic areas of pemphigus foliaceus (fogo selvagem) in Peru , 2006, International journal of dermatology.

[68]  S. Grando,et al.  Cholinergic control of epidermal cohesion , 2006, Experimental dermatology.

[69]  J. Bystryn,et al.  A novel explanation for acantholysis in pemphigus vulgaris: the basal cell shrinkage hypothesis. , 2006, Journal of the American Academy of Dermatology.

[70]  S. Morrison,et al.  Analysis of a family of antibodies with different half-lives in mice fails to find a correlation between affinity for FcRn and serum half-life. , 2006, Molecular immunology.

[71]  M. David,et al.  Apoptotic mechanism in pemphigus autoimmunoglobulins-induced acantholysis—possible involvement of the EGF receptor , 2006, Autoimmunity.

[72]  S. Grando,et al.  Novel mechanisms of target cell death and survival and of therapeutic action of IVIg in Pemphigus. , 2005, The American journal of pathology.

[73]  D. Roopenian,et al.  Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. , 2005, The Journal of clinical investigation.

[74]  T. Krieg,et al.  Anti‐CD20 monoclonal antibody (rituximab) in the treatment of pemphigus , 2005, The British journal of dermatology.

[75]  R. Bergman,et al.  A comparison of anti‐desmoglein antibodies and indirect immunofluorescence in the serodiagnosis of pemphigus vulgaris , 2005, International journal of dermatology.

[76]  Y. Shirakata,et al.  In vitro keratinocyte dissociation assay for evaluation of the pathogenicity of anti-desmoglein 3 IgG autoantibodies in pemphigus vulgaris. , 2005, The Journal of investigative dermatology.

[77]  J. Balthasar,et al.  Pharmacokinetic effects of 4C9, an anti-FcRn antibody, in rats: implications for the use of FcRn inhibitors for the treatment of humoral autoimmune and alloimmune conditions. , 2005, Journal of pharmaceutical sciences.

[78]  Y. Hanakawa,et al.  Genetic and functional characterization of human pemphigus vulgaris monoclonal autoantibodies isolated by phage display. , 2005, The Journal of clinical investigation.

[79]  B. Qaqish,et al.  Anti-desmoglein-1 antibodies in onchocerciasis, leishmaniasis and Chagas disease suggest a possible etiological link to Fogo selvagem. , 2004, The Journal of investigative dermatology.

[80]  S. Akilesh,et al.  The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. , 2004, The Journal of clinical investigation.

[81]  M. Feinmesser,et al.  Possible apoptotic mechanism in epidermal cell acantholysis induced by pemphigus vulgaris autoimmunoglobulins , 2004, Apoptosis.

[82]  T. Pozzan,et al.  Human keratinocyte ATP2C1 localizes to the Golgi and controls Golgi Ca2+ stores. , 2003, The Journal of investigative dermatology.

[83]  P. Amerio,et al.  Urokinase plasminogen activator mRNA is induced by IL‐1α and TNF‐α in in vitro acantholysis , 2003, Experimental dermatology.

[84]  J. Bystryn,et al.  Antibodies to desmoglein 1 and 3, and the clinical phenotype of pemphigus vulgaris. , 2003, Journal of the American Academy of Dermatology.

[85]  T. Nishikawa,et al.  Induction of Pemphigus Phenotype by a Mouse Monoclonal Antibody Against the Amino-Terminal Adhesive Interface of Desmoglein 3 1 , 2003, The Journal of Immunology.

[86]  Y. Kitajima Mechanisms of desmosome assembly and disassembly , 2002, Clinical and experimental dermatology.

[87]  C. Massone,et al.  Allergic contact dermatitis from thiurams with pemphigus‐like autoantibodies , 2002, Contact dermatitis.

[88]  L. Diaz,et al.  A subset of pemphigus foliaceus patients exhibits pathogenic autoantibodies against both desmoglein-1 and desmoglein-3. , 2002, The Journal of investigative dermatology.

[89]  Yusuke Suzuki,et al.  FcRn-mediated transcytosis of immunoglobulin G in human renal proximal tubular epithelial cells. , 2002, American journal of physiology. Renal physiology.

[90]  M. Seishima,et al.  Increased antibody levels to desmogleins 1 and 3 after administration of carbamazepine , 2001, Clinical and experimental dermatology.

[91]  D. Zillikens,et al.  IgG, IgA and IgE autoantibodies against the ectodomain of desmoglein 3 in active pemphigus vulgaris , 2001, The British journal of dermatology.

[92]  M. Simionescu,et al.  Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. , 2001, Human immunology.

[93]  S. Grando Autoimmunity to Keratinocyte Acetylcholine Receptors in Pemphigus , 2000, Dermatology.

[94]  M. Pittelkow,et al.  Antibodies against keratinocyte antigens other than desmogleins 1 and 3 can induce pemphigus vulgaris-like lesions. , 2000, The Journal of clinical investigation.

[95]  S. Grando,et al.  Novel human alpha9 acetylcholine receptor regulating keratinocyte adhesion is targeted by Pemphigus vulgaris autoimmunity. , 2000, The American journal of pathology.

[96]  J. Sulkes,et al.  The distribution of pemphigus vulgaris‐IgG subclasses and their reactivity with desmoglein 3 and 1 in pemphigus patients and their first‐degree relatives , 2000, The British journal of dermatology.

[97]  R. Hoffmann,et al.  The Prevalence of Antibodies against Desmoglein 1 in Endemic Pemphigus Foliaceus in Brazil , 2000 .

[98]  A. Monaco,et al.  Hailey–Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca2+ pump , 2000 .

[99]  T. Nishikawa,et al.  Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus. , 2000, The Journal of clinical investigation.

[100]  M. Udey,et al.  Pemphigus--diseases of antidesmosomal autoimmunity. , 1999, JAMA.

[101]  D. Kelsell,et al.  N-terminal deletion in a desmosomal cadherin causes the autosomal dominant skin disease striate palmoplantar keratoderma. , 1999, Human molecular genetics.

[102]  Zhi Hong Wang,et al.  Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris. , 1999, The Journal of clinical investigation.

[103]  T. Nishikawa,et al.  The clinical phenotype of pemphigus is defined by the anti-desmoglein autoantibody profile. , 1999, Journal of the American Academy of Dermatology.

[104]  P. Amerio,et al.  In vitro C3 mRNA Expression in Pemphigus Vulgaris: Complement Activation is Increased by IL-1α and TNF-α , 1999 .

[105]  T. Nishikawa,et al.  Antibodies against desmoglein 3 (pemphigus vulgaris antigen) are present in sera from patients with paraneoplastic pemphigus and cause acantholysis in vivo in neonatal mice. , 1998, The Journal of clinical investigation.

[106]  T. X. Lee,et al.  The pathophysiological significance of nondesmoglein targets of pemphigus autoimmunity. Development of antibodies against keratinocyte cholinergic receptors in patients with pemphigus vulgaris and pemphigus foliaceus. , 1998, Archives of dermatology.

[107]  E. Fuchs,et al.  Mice expressing a mutant desmosomal cadherin exhibit abnormalities in desmosomes, proliferation, and epidermal differentiation , 1996, The Journal of cell biology.

[108]  T. Nishikawa,et al.  Antigen-specific immunoadsorption of pathogenic autoantibodies in pemphigus foliaceus. , 1995, The Journal of investigative dermatology.

[109]  T. Nishikawa,et al.  Absorption of pathogenic autoantibodies by the extracellular domain of pemphigus vulgaris antigen (Dsg3) produced by baculovirus. , 1994, The Journal of clinical investigation.

[110]  M. Amagai,et al.  Extracellular domain of pemphigus vulgaris antigen (desmoglein 3) mediates weak homophilic adhesion. , 1994, The Journal of investigative dermatology.

[111]  M. Amagai,et al.  Autoantibodies against the amino-terminal cadherin-like binding domain of pemphigus vulgaris antigen are pathogenic. , 1992, The Journal of clinical investigation.

[112]  M. Black,et al.  The distribution of immunoglobulins and the C3 component of complement in multiple biopsies from the uninvolved and perilesional skin in pemphigus , 1986, Clinical and experimental dermatology.

[113]  L. Borradori,et al.  A new light on an old disease: adhesion signaling in pemphigus vulgaris. , 2014, The Journal of investigative dermatology.

[114]  F. Sera,et al.  Are clinical phenotype and autoantibody profile always concordant in pemphigus? A study in a cohort of pemphigus patients. , 2013, European journal of dermatology : EJD.

[115]  R. Yumoto,et al.  Megalin/cubilin-mediated uptake of FITC-labeled IgG by OK kidney epithelial cells. , 2011, Drug metabolism and pharmacokinetics.

[116]  E. Alpsoy,et al.  Immunopathologic features of pemphigus in the east Mediterranean region of Turkey: a prospective study. , 2010, Skinmed.

[117]  Vinod K. Sharma,et al.  Comparison of enzyme-linked immunosorbent assay test with immunoblot assay in the diagnosis of pemphigus in Indian patients. , 2010, Indian journal of dermatology, venereology and leprology.

[118]  H. Wajant,et al.  Apoptosis is not required for acantholysis in pemphigus vulgaris. , 2009, American journal of physiology. Cell physiology.

[119]  L. Diaz,et al.  Inhibition of pemphigus vulgaris by targeting of the CD40-CD154 co-stimulatory pathway: a step toward antigen-specific therapy? , 2006, The Journal of investigative dermatology.

[120]  K. Wolff,et al.  Expression of FcRn, the MHC class I-related receptor for IgG, in human keratinocytes. , 2005, The Journal of investigative dermatology.

[121]  A. Marconi,et al.  Fas ligand in pemphigus sera induces keratinocyte apoptosis through the activation of caspase-8. , 2003, The Journal of investigative dermatology.

[122]  T. Mauro,et al.  Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease , 2000, Nature Genetics.

[123]  P. Amerio,et al.  In Vitro and In Vivo Expression of Interleukin-1α and Tumor Necrosis Factor-α mRNA in Pemphigus Vulgaris: Interleukin-1α and Tumor Necrosis Factor-α are Involved in Acantholysis , 2000 .

[124]  S. Brenner,et al.  Circulating pemphigus IgG in families of patients with pemphigus: comparison of indirect immunofluorescence, direct immunofluorescence, and immunoblotting. , 1997, Journal of the American Academy of Dermatology.

[125]  T. Hashimoto,et al.  Pemphigus IgG, but not bullous pemphigoid IgG, causes a transient increase in intracellular calcium and inositol 1,4,5-triphosphate in DJM-1 cells, a squamous cell carcinoma line. , 1995, The Journal of investigative dermatology.