Symbolic representation of two-dimensional shapes

In this paper, we present a method for representing a two-dimensional shape by symbolic features. A shape is represented in terms of multi-interval valued type features. A similarity measure defined over symbolic features that is useful for retrieval of shapes from a shape database is also presented. Unlike other shape representation schemes, the proposed scheme is capable of preserving both contour as well as region information. The proposed method of shape representation and retrieval is shown to be invariant to image transformations (translation, rotation, reflection and scaling) and robust to minor deformations and occlusions. Several experiments have been conducted to demonstrate the feasibility of the methodology and also to highlight its advantages over an existing methodology.

[1]  Z. Zenn Bien,et al.  A theory of generalized incremental circle transform and its application for recognition of two-dimensional objects , 1994, Pattern Recognit. Lett..

[2]  Luciano da Fontoura Costa,et al.  A graph-based approach for multiscale shape analysis , 2004, Pattern Recognit..

[3]  Thierry Denoeux,et al.  Multidimensional scaling of interval-valued dissimilarity data , 2000, Pattern Recognit. Lett..

[4]  K. Chidananda Gowda,et al.  Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity , 1995, Pattern Recognit. Lett..

[5]  Paul L. Rosin,et al.  Shape Orientability , 2006, ACCV.

[6]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Thomas Bernier,et al.  A new method for representing and matching shapes of natural objects , 2003, Pattern Recognit..

[8]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data , 2000 .

[9]  P. Nagabhushan,et al.  Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns , 2004, Pattern Recognit. Lett..

[10]  David B. Cooper,et al.  Recognition and positioning of rigid objects using algebraic moment invariants , 1991, Optics & Photonics.

[11]  Hong Yan,et al.  Effective classification of planar shapes based on curve segment properties , 1997, Pattern Recognit. Lett..

[12]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[13]  Hon Fung Li,et al.  Shapes Recognition Using the Straight Line Hough Transform: Theory and Generalization , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Whoi-Yul Kim,et al.  A region-based shape descriptor using Zernike moments , 2000, Signal Process. Image Commun..

[15]  PaperNo Recognition of shapes by editing shock graphs , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[17]  Mehmet Ali Aktas Shape descriptors , 2009, Encyclopedia of Database Systems.

[18]  Hae-Kwang Kim,et al.  Region-based shape descriptor invariant to rotation, scale and translation , 2000, Signal Process. Image Commun..

[19]  Lili Zhou,et al.  Region-based shape representation and similarity measure suitable for binary image retrieval , 2006, 2006 8th international Conference on Signal Processing.

[20]  Shu-Yuen Hwang,et al.  A machine learning approach for acquiring descriptive classification rules of shape contours , 1997, Pattern Recognit..

[21]  K. Chidananda Gowda,et al.  Symbolic clustering using a new similarity measure , 1992, IEEE Trans. Syst. Man Cybern..

[22]  Manabu Ichino,et al.  Generalized Minkowski metrics for mixed feature-type data analysis , 1994, IEEE Trans. Syst. Man Cybern..

[23]  P. Nagabhushan,et al.  Incremental circle transform and eigenvalue analysis for object recognition: an integrated approach , 2000, Pattern Recognit. Lett..

[24]  D. S. Guru,et al.  Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns , 2005, Pattern Recognit..

[25]  Chi Chung Ko,et al.  Using moment invariants and HMM in facial expression recognition , 2000, 4th IEEE Southwest Symposium on Image Analysis and Interpretation.

[26]  Ulrich Eckhardt,et al.  Shape descriptors for non-rigid shapes with a single closed contour , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[27]  Edwin Diday,et al.  Symbolic clustering using a new dissimilarity measure , 1991, Pattern Recognit..

[28]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Guojun Lu,et al.  Region-based shape representation and similarity measure suitable for content-based image retrieval , 1999, Multimedia Systems.

[30]  E. R. Davies,et al.  Machine vision - theory, algorithms, practicalities , 2004 .

[31]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[32]  K. Chidananda Gowda,et al.  Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity , 1995, Pattern Recognit..

[33]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[34]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[35]  Du-Ming Tsai,et al.  Object recognition by a linear weight classifier , 1995, Pattern Recognit. Lett..

[36]  Jianning Xu Hierarchical representation of 2-D shapes using convex polygons: A morphological approach , 1997, Pattern Recognit. Lett..

[37]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Farzin Mokhtarian,et al.  Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.