Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments.

Hydrogenosomes are membrane-bound organelles that compartmentalise the final steps of energy metabolism in a number of anaerobic eukaryotes. They produce hydrogen and ATP. Here we will review the data, which are relevant for the questions: how did the hydrogenosomes originate, and what was their ancestor? Notably, there is strong evidence that hydrogenosomes evolved several times as adaptations to anaerobic environments. Most likely, hydrogenosomes and mitochondria share a common ancestor, but an unequivocal proof for this hypothesis is difficult because hydrogenosomes lack an organelle genome - with one remarkable exception (Nyctotherus ovalis). In particular, the diversity of extant hydrogenosomes hampers a straightforward analysis of their origins. Nevertheless, it is conceivable to postulate that the common ancestor of mitochondria and hydrogenosomes was a facultative anaerobic organelle that participated in the early radiation of unicellular eukaryotes. Consequently, it is reasonable to assume that both, hydrogenosomes and mitochondria are evolutionary adaptations to anaerobic or aerobic environments, respectively.

[1]  R. E. Hungate,et al.  The Rumen and Its Microbes , 2013 .

[2]  W. Martin,et al.  Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. , 2001, Molecular biology and evolution.

[3]  J. Doré,et al.  Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. , 2001, FEMS microbiology ecology.

[4]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[5]  D. Horner,et al.  Iron hydrogenases and the evolution of anaerobic eukaryotes. , 2000, Molecular biology and evolution.

[6]  K. Henze,et al.  Origins of hydrogenosomes and mitochondria. , 2000, Current opinion in microbiology.

[7]  P. J. Johnson,et al.  Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis. , 2000, Current opinion in microbiology.

[8]  T G Frey,et al.  The internal structure of mitochondria. , 2000, Trends in biochemical sciences.

[9]  A. Brune,et al.  Microecology of the termite gut: structure and function on a microscale. , 2000, Current opinion in microbiology.

[10]  T. Kudo,et al.  Phylogenetic Identification of Hypermastigotes, Pseudotrichonympha, Spirotrichonympha, Holomastigotoides, and Parabasalian Symbionts in the Hindgut of Termites , 2000, The Journal of eukaryotic microbiology.

[11]  H Philippe,et al.  Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. , 2000, Molecular biology and evolution.

[12]  Y. Peer,et al.  Microsporidia: accumulating molecular evidence that a group of amitochondriate and suspectedly primitive eukaryotes are just curious fungi. , 2000, Gene.

[13]  C. Turck,et al.  Presence of a Member of the Mitochondrial Carrier Family in Hydrogenosomes: Conservation of Membrane-Targeting Pathways between Hydrogenosomes and Mitochondria , 2000, Molecular and Cellular Biology.

[14]  D. Clemens,et al.  Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. , 2000, Molecular and biochemical parasitology.

[15]  J. Leunissen,et al.  Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. , 2000, Molecular biology and evolution.

[16]  M. Theodorou,et al.  Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 18S rRNA. , 2000 .

[17]  J. Hackstein,et al.  Hydrogenosomes: eukaryotic adaptations to anaerobic environments. , 1999, Trends in microbiology.

[18]  Andrew J. Roger,et al.  Reconstructing Early Events in Eukaryotic Evolution , 1999, The American Naturalist.

[19]  D. Moreira,et al.  Respiratory Chains in the Last Common Ancestor of Living Organisms , 1999, Journal of Molecular Evolution.

[20]  C. Kurland,et al.  Origins of mitochondria and hydrogenosomes. , 1999, Current opinion in microbiology.

[21]  D. Horner,et al.  A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. , 1999, Molecular biology and evolution.

[22]  J. Hackstein,et al.  Voltage‐Dependent Reversal of Anodic Galvanotaxis in Nyctotherus ovalis , 1999, The Journal of eukaryotic microbiology.

[23]  C. Clark,et al.  The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica , 1999, Molecular microbiology.

[24]  J. Hackstein,et al.  A hydrogenosome with pyruvate formate‐lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism , 1999, Molecular microbiology.

[25]  J. Samuelson,et al.  Hsp60 Is Targeted to a Cryptic Mitochondrion-Derived Organelle (“Crypton”) in the Microaerophilic Protozoan Parasite Entamoeba histolytica , 1999, Molecular and Cellular Biology.

[26]  J. Hackstein,et al.  A hydrogenosome with a genome , 1998, Nature.

[27]  J. Hackstein,et al.  Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp. E2 , 1998, Molecular microbiology.

[28]  J. Hackstein,et al.  Evolution of anaerobic ciliates from the gastrointestinal tract: phylogenetic analysis of the ribosomal repeat from Nyctotherus ovalis and its relatives. , 1998, Molecular biology and evolution.

[29]  R. Herrmann,et al.  Gene transfer from organelles to the nucleus: how much, what happens, and Why? , 1998, Plant physiology.

[30]  J. J. van Hellemond,et al.  The electron transport chain in anaerobically functioning eukaryotes. , 1998, Biochimica et biophysica acta.

[31]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  F. Opperdoes,et al.  Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[34]  J. Kiel,et al.  The hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis is targeted to mitochondria of the methylotrophic yeast Hansenula polymorpha , 1998, Current Genetics.

[35]  M. Sogin,et al.  A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Wanders,et al.  Cloning of the human carnitine-acylcarnitine carrier cDNA and identification of the molecular defect in a patient. , 1997, American journal of human genetics.

[37]  T. Embley,et al.  Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? , 1997, Trends in ecology & evolution.

[38]  M. Benchimol,et al.  A double membrane surrounds the hydrogenosomes of the anaerobic fungus Neocallimastix frontalis , 1997 .

[39]  W. Alkema,et al.  Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome , 1997, FEBS letters.

[40]  J. Hackstein,et al.  Bacteria in the Intestinal Tract of Different Species of Arthropods , 1997, Microbial Ecology.

[41]  W. Ghiorse Subterranean Life , 1997, Science.

[42]  T. Embley,et al.  A mitochondrial‐like targeting signal on the hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis: support for the hypothesis that hydrogenosomes are modified mitochondria , 1997, Molecular microbiology.

[43]  K. Strimmer,et al.  Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies , 1996 .

[44]  W. de Souza,et al.  Further studies on the organization of the hydrogenosome in Tritrichomonas foetus. , 1996, Tissue & cell.

[45]  J. Hackstein,et al.  FECAL METHANOGENS AND VERTEBRATE EVOLUTION , 1996, Evolution; international journal of organic evolution.

[46]  J. Hackstein,et al.  Methane production in terrestrial arthropods. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A. Driessen,et al.  Metabolic energy generation in hydrogenosomes of the anaerobic fungus Neocallimastix: evidence for a functional relationship with mitochondria , 1994 .

[48]  G. Vogels,et al.  Molecular cloning of hydrogenosomal ferredoxin cDNA from the anaerobic amoeboflagellate Psalteriomonas lanterna. , 1994, Biochimica et biophysica acta.

[49]  Miklós Müller Review Article: The hydrogenosome , 1993 .

[50]  T. Cavalier-smith,et al.  Kingdom protozoa and its 18 phyla. , 1993, Microbiological reviews.

[51]  M. Veenhuis,et al.  The hydrogenosomal enzyme hydrogenase from the anaerobic fungus Neocallimastix sp. L2 is recognized by antibodies, directed against the C-terminal microbody protein targeting signal SKL. , 1993, European journal of cell biology.

[52]  R. Cammack,et al.  Evidence for an [Fe]‐type hydrogenase in the parasitic protozoan Trichomonas vaginalis , 1993, FEBS letters.

[53]  J. Gottschal,et al.  Characterization of an anaerobic fungus from llama faeces. , 1992, Journal of general microbiology.

[54]  Lynn Margulis,et al.  Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons , 1992 .

[55]  J. Schopf,et al.  The Proterozoic Biosphere: The Proterozoic Biosphere , 1992 .

[56]  H. Gijzen,et al.  Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut , 1991, Applied and environmental microbiology.

[57]  G. Vogels,et al.  Psalteriomonas lanterna gen. nov., sp. nov., a free-living amoeboflagellate isolated from freshwater anaerobic sediments. , 1990, European journal of protistology.

[58]  G. Vogels,et al.  Cytochemical Localization of Hydrogenase Activity in the Anaerobic Protozoa Trichomonas vaginalis, Plagiopyla nasuta and Trimyema compressum , 1988 .

[59]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[60]  T. Miller,et al.  Methanogens in human and animal intestinal Tracts , 1986 .

[61]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[62]  D. Lloyd,et al.  Hydrogenosomes in the rumen protozoon Dasytricha ruminantium Schuberg. , 1981, The Biochemical journal.

[63]  G. Vogels,et al.  Association of methanogenic bacteria with rumen ciliates , 1980, Applied and environmental microbiology.

[64]  Barbara M. Bakker,et al.  Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. , 2001, FEMS microbiology reviews.

[65]  M. Huynen,et al.  A mitochondrial ancestry of the hydrogenosomes of Nyctotherus ovalis. , 2000, Molecular biology and evolution.

[66]  Hans G. Schlegel,et al.  Biology of the prokaryotes , 1999 .

[67]  B. Lang,et al.  Mitochondrial evolution. , 1999, Science.

[68]  B. Lang,et al.  Mitochondrial Evolution , 1999 .

[69]  G. H. Coombs,et al.  Enzymes and compartmentation of core energy metabolism of anaerobic protists - a special case in eukaryotic evolution? , 1998 .

[70]  M. Grieshaber,et al.  Animal adaptations for tolerance and exploitation of poisonous sulfide. , 1998, Annual review of physiology.

[71]  J. Palmer Organelle genomes: going, going, gone! , 1997, Science.

[72]  Reinhold G. Herrmann,et al.  Eukaryotism, Towards a New Interpretation , 1997 .

[73]  W. Schwemmler,et al.  Eukaryotism and Symbiosis Intertaxonic Combination versus Symbiotic Adaptation , 1997 .

[74]  Reinhold G. Herrmann,et al.  Eukaryotism and Symbiosis , 1997, Springer Berlin Heidelberg.

[75]  J. Adachi,et al.  MOLPHY version 2.3 : programs for molecular phylogenetics based on maximum likelihood , 1996 .

[76]  W. de Souza,et al.  Morphogenesis of the hydrogenosome: an ultrastructural study. , 1996, Biology of the cell.

[77]  Bland J. Finlay,et al.  Ecology and evolution in anoxic worlds , 1995 .

[78]  A. Tielens Energy generation in parasitic helminths. , 1994, Parasitology today.

[79]  J. William Schopf,et al.  The Proterozoic biosphere : a multidisciplinary study , 1992 .

[80]  D. Cruden,et al.  Microbial Ecology of the Cockroach Gut , 1987 .

[81]  N. Saito The neighbor-joining method : A new method for reconstructing phylogenetic trees , 1987 .

[82]  D. Lloyd,et al.  Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents. , 1983, Comparative biochemistry and physiology. B, Comparative biochemistry.

[83]  D. Lynn,et al.  A new macrosystem for the phylum Ciliophora doflein, 1901. , 1981, Bio Systems.

[84]  D. Savage Microbial ecology of the gastrointestinal tract. , 1977, Annual review of microbiology.

[85]  G. Beale Ciliated protozoa. , 1968, Journal of general microbiology.

[86]  Louis Dollo,et al.  Les lois de l'évolution , 1893 .

[87]  Miklós,et al.  The hydrogenosome , 2022 .