The Evolution of Representation in Simple Cognitive Networks

Representations are internal models of the environment that can provide guidance to a behaving agent, even in the absence of sensory information. It is not clear how representations are developed and whether they are necessary or even essential for intelligent behavior. We argue here that the ability to represent relevant features of the environment is the expected consequence of an adaptive process, give a formal definition of representation based on information theory, and quantify it with a measure R. To measure how R changes over time, we evolve two types of networks—an artificial neural network and a network of hidden Markov gates—to solve a categorization task using a genetic algorithm. We find that the capacity to represent increases during evolutionary adaptation and that agents form representations of their environment during their lifetime. This ability allows the agents to act on sensorial inputs in the context of their acquired representations and enables complex and context-dependent behavior. We examine which concepts (features of the environment) our networks are representing, how the representations are logically encoded in the networks, and how they form as an agent behaves to solve a task. We conclude that R should be able to quantify the representations within any cognitive system and should be predictive of an agent's long-term adaptive success.

[1]  Philip N. Johnson-Laird,et al.  Thinking; Readings in Cognitive Science , 1977 .

[2]  Jim Kay,et al.  How Local Cortical Processors that Maximize Coherent Variation could lay Foundations for Representation Proper , 1995 .

[3]  Jim W Kay,et al.  Coherent Infomax as a Computational Goal for Neural Systems , 2011, Bulletin of mathematical biology.

[4]  Stefano Nolfi,et al.  Power and the limits of reactive agents , 2002, Neurocomputing.

[5]  K. J. Craik,et al.  The nature of explanation , 1944 .

[6]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[7]  D. McDermott LANGUAGE OF THOUGHT , 2012 .

[8]  Michael J. Berry,et al.  Network information and connected correlations. , 2003, Physical review letters.

[9]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[10]  M. R. Manzini Learnability and Cognition , 1991 .

[11]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[12]  Chris Thornton,et al.  Representation Recovers Information , 2009, Cogn. Sci..

[13]  D. Floreano,et al.  Evolutionary Robotics: The Biology,Intelligence,and Technology , 2000 .

[14]  Giulio Tononi,et al.  Integrated Information in Discrete Dynamical Systems: Motivation and Theoretical Framework , 2008, PLoS Comput. Biol..

[15]  Andy Clark,et al.  The Dynamical Challenge , 1997, Cogn. Sci..

[16]  Pattie Maes,et al.  Toward the Evolution of Dynamical Neural Networks for Minimally Cognitive Behavior , 1996 .

[17]  Arend Hintze,et al.  Integrated Information Increases with Fitness in the Evolution of Animats , 2011, PLoS Comput. Biol..

[18]  Randall D. Beer,et al.  The Dynamics of Active Categorical Perception in an Evolved Model Agent , 2003, Adapt. Behav..

[19]  Robin R. Murphy,et al.  Biological and cognitive foundations of intelligent sensor fusion , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[20]  Hartry Field Mental representation , 2021, Encyclopedia of Autism Spectrum Disorders.

[21]  Hod Lipson,et al.  Resilient Machines Through Continuous Self-Modeling , 2006, Science.

[22]  P. Kleingeld,et al.  The Stanford Encyclopedia of Philosophy , 2013 .

[23]  W. Singer,et al.  In search of common foundations for cortical computation , 1997, Behavioral and Brain Sciences.

[24]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[25]  D. George,et al.  A hierarchical Bayesian model of invariant pattern recognition in the visual cortex , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[26]  P. Berkes,et al.  Statistically Optimal Perception and Learning: from Behavior to Neural Representations , 2022 .

[27]  Jin-Yi Cai,et al.  Circuit minimization problem , 2000, STOC '00.

[28]  A. Hintze,et al.  Measuring Representation , 2010 .

[29]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[30]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[31]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[32]  Robert T. Pennock,et al.  The evolutionary origin of complex features , 2003, Nature.

[33]  S. Harnad Categorical Perception: The Groundwork of Cognition , 1990 .

[34]  Henri Cohen,et al.  Handbook of categorization in cognitive science , 2005 .

[35]  H. A. Orr,et al.  The rate of adaptation in asexuals. , 2000, Genetics.

[36]  D. J. Albers,et al.  Routes to Chaos in Neural Networks with Random Weights , 1998 .

[37]  Francesco Mondada,et al.  Evolution of homing navigation in a real mobile robot , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[38]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[39]  A. Efland,et al.  Art and cognition , 2002 .

[40]  Nir Friedman,et al.  Probabilistic Graphical Models , 2009, Data-Driven Computational Neuroscience.

[41]  Michael I. Jordan,et al.  An internal model for sensorimotor integration. , 1995, Science.

[42]  Arend Hintze,et al.  Integrated information increases with fitness in the simulated evolution of autonomous agents , 2011 .

[43]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[44]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[45]  A. U.S.,et al.  Predictability , Complexity , and Learning , 2002 .

[46]  Noam Chomsky,et al.  वाक्यविन्यास का सैद्धान्तिक पक्ष = Aspects of the theory of syntax , 1965 .

[47]  Georges Rey,et al.  Language of Thought , 2006 .

[48]  J. Hawkins,et al.  On Intelligence , 2004 .

[49]  Dileep George,et al.  Towards a Mathematical Theory of Cortical Micro-circuits , 2009, PLoS Comput. Biol..

[50]  Michael Satosi Watanabe,et al.  Information Theoretical Analysis of Multivariate Correlation , 1960, IBM J. Res. Dev..

[51]  Andy Clark,et al.  Doing without representing? , 1994, Synthese.

[52]  Ralf Der,et al.  Predictive information and explorative behavior of autonomous robots , 2008 .

[53]  G. Tononi Consciousness as Integrated Information: a Provisional Manifesto , 2008, The Biological Bulletin.

[54]  Joseph J Atick,et al.  Could information theory provide an ecological theory of sensory processing? , 2011, Network.

[55]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[56]  J. Nadal,et al.  Nonlinear neurons in the low-noise limit: a factorial code maximizes information transfer Network 5 , 1994 .

[57]  Paul Humphreys,et al.  The philosophical novelty of computer simulation methods , 2009, Synthese.

[58]  Eric O. Postma,et al.  Reactive Agents and Perceptual Ambiguity , 2005, Adapt. Behav..

[59]  William J. McGill Multivariate information transmission , 1954, Trans. IRE Prof. Group Inf. Theory.

[60]  Robert Ward,et al.  Representation in dynamical agents , 2009, Neural Networks.

[61]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.