Parameterization and prediction of temporal fuel cell voltage behavior during flooding and drying conditions

Abstract This paper describes a simple isothermal two-phase flow dynamic model that predicts the experimentally observed temporal behavior of a proton exchange membrane fuel cell stack. This model is intended for use in embedded real time control where computational simplicity is of critical importance. A reproducible methodology is presented to experimentally identify six (6) tunable physical parameters based on the estimation of the cell voltage, the water vapor transport through the membrane and the accumulation of liquid water in the gas channels. The model equations allow temporal calculation of the species concentrations across the gas diffusion layers, the vapor transport across the membrane, and the degree of flooding within the cell structure. The notion of apparent current density then relates this flooding phenomena to cell performance through a reduction in the cell active area as liquid water accumulates. Despite the oversimplification of many complex phenomena, this model provides a useful tool for predicting the resulting decay in cell voltage over time only after it has been tuned with experimental data. The calibrated model and tuning procedure is demonstrated with a 1.4 kW (24 cell, 300 cm 2 ) stack, using pressure regulated pure hydrogen supplied to a dead-ended anode, under a range of operating conditions typical for multi-cell stacks.

[1]  Chao-Yang Wang,et al.  Transient analysis of polymer electrolyte fuel cells , 2005 .

[2]  N. Djilali,et al.  Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers , 2006 .

[3]  K. A. Kosanovich,et al.  Parameter and state estimation of a proton-exchange membrane fuel cell using sequential quadratic programming , 1997 .

[4]  Thomas A. Trabold,et al.  In situ investigation of water transport in an operating PEM fuel cell using neutron radiography: Part 1 – Experimental method and serpentine flow field results , 2006 .

[5]  K. Sharp,et al.  Liquid droplet behavior and instability in a polymer electrolyte fuel cell flow channel , 2006 .

[6]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[7]  Alexander Wokaun,et al.  In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging Part B. Material variations , 2006 .

[8]  Ned Djilali,et al.  A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell , 2003 .

[9]  Paola Costamagna,et al.  Transport phenomena in polymeric membrane fuel cells , 2001 .

[10]  J. Hinatsu,et al.  Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor , 1994 .

[11]  S. Kocha,et al.  Characterization of gas crossover and its implications in PEM fuel cells , 2006 .

[12]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[13]  J. C. Amphlett Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell , 1995 .

[14]  Jack S. Brenizer,et al.  The Nature of Flooding and Drying in Polymer Electrolyte Fuel Cells , 2005 .

[15]  Anna G. Stefanopoulou,et al.  Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems , 2004 .

[16]  Chao-Yang Wang,et al.  Two-Phase Transients of Polymer Electrolyte Fuel Cells , 2007 .

[17]  Anna G. Stefanopoulou,et al.  Order Reduction for a Control-Oriented Model of the Water Dynamics in Fuel Cells , 2006 .

[18]  A.G. Stefanopoulou,et al.  Control of fuel cell breathing , 2004, IEEE Control Systems.

[19]  Trung Van Nguyen,et al.  A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors , 2001 .

[20]  Ned Djilali,et al.  Systematic parameter estimation for PEM fuel cell models , 2005 .

[21]  D. Jacobson,et al.  Real-Time Imaging of Liquid Water in an Operating Proton Exchange Membrane Fuel Cell , 2005 .

[22]  B. Wetton,et al.  Water Management in PEM Fuel Cells , 2004 .

[23]  Trung Van Nguyen,et al.  Current distribution in PEM fuel cells. Part 1: Oxygen and fuel flow rate effects , 2005 .

[24]  N. Djilali,et al.  Influence of heat transfer on gas and water transport in fuel cells , 2002 .

[25]  Anna G. Stefanopoulou,et al.  Parameterization of Fuel Cell Stack Voltage: Issues on Sensitivity, Cell-to Cell Variation, and Transient Response , 2006 .

[26]  Frano Barbir,et al.  PEM Fuel Cells: Theory and Practice , 2012 .

[27]  T. Nguyen,et al.  An Along‐the‐Channel Model for Proton Exchange Membrane Fuel Cells , 1998 .

[28]  Ralph E. White,et al.  Parameter Estimates for a PEMFC Cathode , 2004, 1308.4590.

[29]  T. Nguyen,et al.  Modeling Liquid Water Effects in the Gas Diffusion and Catalyst Layers of the Cathode of a PEM Fuel Cell , 2004 .

[30]  J. Weidner,et al.  Diffusion of water in Nafion 115 membranes , 2000 .

[31]  Hongtan Liu,et al.  A two-phase flow and transport model for the cathode of PEM fuel cells , 2002 .

[32]  Hyunchul Ju,et al.  Experimental Validation of a PEM Fuel Cell Model by Current Distribution Data , 2004 .

[33]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[34]  Chao-Yang Wang,et al.  Dynamics of polymer electrolyte fuel cells undergoing load changes , 2006 .

[35]  G. Lindbergh,et al.  Mathematical model of the PEMFC , 2000 .

[36]  Sirivatch Shimpalee,et al.  Prediction of transient response for a 25-cm2 PEM fuel cell , 2007 .

[37]  Jin Hyun Nam,et al.  Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium , 2003 .

[38]  Alexander Wokaun,et al.  In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part A. Experimental, data treatment, and quantification , 2005 .

[39]  T. Fuller,et al.  Water and Thermal Management in Solid‐Polymer‐Electrolyte Fuel Cells , 1993 .

[40]  Song-Yul Choe,et al.  Unsteady 2D PEM fuel cell modeling for a stack emphasizing thermal effects , 2007 .

[41]  Hyunchul Ju,et al.  Nonisothermal Modeling of Polymer Electrolyte Fuel Cells I. Experimental Validation , 2005 .

[42]  S. Dutta,et al.  Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell , 2001 .

[43]  Karlene A. Hoo,et al.  Parameter estimation of a proton-exchange membrane fuel cell using voltage–current data , 2000 .