Predicting potentially toxigenic Pseudo-nitzschia blooms in the Chesapeake Bay

article i nfo Harmful algal blooms are now recognized as a significant threat to the Chesapeake Bay as they can severely compromise the economic viability of important recreational and commercial fisheries in the largest estuary of the United States. This study describes the development of empirical models for the potentially domoic acid-producing Pseudo-nitzschia species complex present in the Bay, developed from a 22-year time series of cell abundance and concurrent measurements of hydrographic and chemical properties. Using a logistic Generalized Linear Model (GLM) approach, model parameters and performance were compared over a range of Pseudo-nitzschia bloom thresholds relevant to toxin production by different species. Small-threshold blooms (≥10cells mL −1 ) are explained by time of year, location, and variability in surface values of phosphate, temperature, nitrate plus nitrite, and freshwater discharge. Medium- (100 cells mL −1 ) to large- threshold (1000 cells mL −1 ) blooms are further explained by salinity, silicic acid, dissolved organic carbon, and light attenuation (Secchi) depth. These predictors are similar to other models for Pseudo-nitzschia blooms on the west coast, suggesting commonalities across ecosystems. Hindcasts of bloom probabilities at a 19% bloom prediction point yield a Heidke Skill Score of ~53%, a Probability of Detection ∼75%, a False Alarm Ratio of ∼52%, and a Probability of False Detection ∼9%. The implication of possible future changes in Baywide nutrient stoichiometry on Pseudo-nitzschia blooms is discussed.

[1]  C. Gobler,et al.  Eutrophication and Harmful Algal Blooms: A Scientific Consensus. , 2008, Harmful algae.

[2]  Sandra L McLellan,et al.  Climate change and waterborne disease risk in the Great Lakes region of the U.S. , 2008, American journal of preventive medicine.

[3]  M. T. Maldonado,et al.  The effect of Fe and Cu on growth and domoic acid production by Pseudo-nitzschia multiseries and Pseudo‐nitzschia australis , 2002 .

[4]  M. Parsons,et al.  EFFECT OF SALINITY ON PSEUDO‐NITZSCHIA SPECIES (BACILLARIOPHYCEAE) GROWTH AND DISTRIBUTION 1 , 2005 .

[5]  D. Garrison Monterey Bay Phytoplankton. II. Resting Spore Cycles in Coastal Diatom Populations , 1981 .

[6]  M. Varela,et al.  New and regenerated production and ammonium regeneration in the western Bransfield Strait region (Antarctica) during phytoplankton bloom conditions in summer , 2002 .

[7]  C. McClain,et al.  Biogeochemical modelling of the tropical Pacific Ocean. I: Seasonal and interannual variability , 2001 .

[8]  Michael R. Roman,et al.  Eutrophication of Chesapeake Bay: historical trends and ecological interactions , 2005 .

[9]  P. Harrison,et al.  Environmental conditions and phytoplankton dynamics associated with Pseudo-nitzschia abundance and domoic acid in the Juan de Fuca eddy , 2004 .

[10]  V. Trainer,et al.  Domoic acid: The synergy of iron, copper, and the toxicity of diatoms , 2005 .

[11]  J. Stewart Bacterial involvement in determining domoic acid levels in Pseudo-nitzschia multiseries cultures , 2008 .

[12]  G. Procaccini,et al.  Multiple rDNA ITS-types within the diatom Pseudo-nitzschia delicatissima (Bacillariophyceae) and their relative abundances across a spring bloom in the Gulf of Naples , 2004 .

[13]  M. Busman,et al.  Domoic acid production near California coastal upwelling zones, June 1998 , 2000 .

[14]  G. Walker-Arnott What are Marine Diatoms , 1859 .

[15]  Paul Bienfang,et al.  Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure , 2008, Environmental health : a global access science source.

[16]  Rita R. Colwell,et al.  Predicting the Distribution of Vibrio spp. in the Chesapeake Bay: A Vibrio cholerae Case Study , 2009, EcoHealth.

[17]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[18]  M. Johansen,et al.  The use of fuzzy logic for data analysis and modelling of European harmful algal blooms: results of the HABES project , 2006 .

[19]  Erin R. Haramoto,et al.  Harmful algal blooms in the Chesapeake and Coastal Bays of Maryland, USA: Comparison of 1997, 1998, and 1999 events , 2001 .

[20]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[21]  J. Ramsdell,et al.  In Utero Domoic Acid Toxicity: A Fetal Basis to Adult Disease in the California Sea Lion (Zalophus californianus) , 2008, Marine drugs.

[22]  M. Quilliam,et al.  AN OUTBREAK OF DOMOIC ACID POISONING ATTRIBUTED TO THE PENNATE DIATOM PSEUDONITZSCHIA AUSTRALIS 1 , 1992 .

[23]  S. Bates,et al.  The Ecology of Harmful Diatoms , 2006 .

[24]  J. T. Turner,et al.  Ecology of harmful algae , 2006 .

[25]  G. Hallegraeff A review of harmful algal blooms and their apparent global increase , 1993 .

[26]  C. Gobler,et al.  Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. , 2008, Harmful algae.

[27]  Raphael M. Kudela,et al.  Development of a logistic regression model for the prediction of toxigenic Pseudo-nitzschia blooms in Monterey Bay, California. , 2009 .

[28]  C. Oppenheimer Symposium on Marine Microbiology , 1963 .

[29]  C. Anderson,et al.  Long-Term Variability of Nutrients and Chlorophyll in the Chesapeake Bay: A Retrospective Analysis, 1985–2008 , 2010 .

[30]  T. Wynne,et al.  An evaluation of remote sensing techniques for enhanced detection of the toxic dinoflagellate, Karenia brevis , 2009 .

[31]  W. Collins,et al.  Global climate projections , 2007 .

[32]  J. Burkholder,et al.  Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences , 2002 .

[33]  L. Sprague,et al.  Monitoring nutrients in the major rivers draining to Chesapeake Bay , 1999 .

[34]  K. Evans,et al.  HIGH LEVELS OF GENETIC DIVERSITY AND LOW LEVELS OF GENETIC DIFFERENTIATION IN NORTH SEA PSEUDO‐NITZSCHIA PUNGENS (BACILLARIOPHYCEAE) POPULATIONS 1 , 2005 .

[35]  T. Smayda,et al.  Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea , 1997 .

[36]  Quay Dortch,et al.  Sedimentological evidence of an increase in Pseudo‐nitzschia (Bacillariophyceae)abundance in response to coastal eutrophication , 2002 .

[37]  M. Busman,et al.  Pseudo-nitzschia sp. cf. pseudodelicatissima — a confirmed producer of domoic acid from the northern Gulf of Mexico , 2001 .

[38]  J. McKenna,et al.  DOC dynamics in a small temperate estuary: Simultaneous addition and removal processes and implications on observed nonconservative behavior , 2004 .

[39]  S. Doney,et al.  An intermediate complexity marine ecosystem model for the global domain , 2001 .

[40]  A. Olivos-Ortiz,et al.  A toxic Pseudo-nitzschia bloom in Todos Santos Bay, northwestern Baja California, Mexico , 2009 .

[41]  R. Kudela,et al.  Nitrogenous preference of toxigenic Pseudo-nitzschia australis (Bacillariophyceae) from field and laboratory experiments , 2007 .

[42]  P. Heidke,et al.  Berechnung Des Erfolges Und Der Güte Der Windstärkevorhersagen Im Sturmwarnungsdienst , 1926 .

[43]  J. Ehrman,et al.  Interaction between bacteria and the domoic-acid-producing diatom Pseudo-nitzschia multiseries (Hasle) Hasle; can bacteria produce domoic acid autonomously? , 2004 .

[44]  A. Cembella,et al.  Environmental stress and domoic acid production by Pseudo-nitzschia: a physiological perspective. , 1998, Natural toxins.

[45]  J. Siddorn,et al.  How well can we forecast high biomass algal bloom events in a eutrophic coastal sea , 2008 .

[46]  Vera L. Trainer,et al.  Harmful Algal Blooms in Coastal Upwelling Systems , 2005 .

[47]  D. Haidvogel,et al.  A semi-implicit ocean circulation model using a generalized topography-following coordinate system , 1994 .

[48]  Daniel R. Lynch,et al.  Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: Results from a physical–biological model , 2005 .

[49]  H. Bowers,et al.  Intra- and interspecies differences in growth and toxicity of Pseudo-nitzschia while using different nitrogen sources , 2009 .

[50]  F. Davis,et al.  Stratigraphic Evidence of Human Disturbance in an Estuary , 1984, Quaternary Research.

[51]  D. Siegel,et al.  Variability of net longwave radiation over the eastern North Pacific Ocean , 1986 .

[52]  V. Trainer,et al.  Monitoring Approaches for Early Warning of Domoic Acid Events in Washington State , 2005 .

[53]  Louis A. Codispoti,et al.  The Role of Eutrophication in the Global Proliferation of Harmful Algal Blooms , 2005 .

[54]  P. Falkowski,et al.  Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids , 2002 .

[55]  R. Beyer,et al.  Gene expression profiles in zebrafish brain after acute exposure to domoic acid at symptomatic and asymptomatic doses. , 2009, Toxicological sciences : an official journal of the Society of Toxicology.

[56]  U. Sommer Are marine diatoms favoured by high Si:N ratios? , 1994 .

[57]  Richard C. Dugdale,et al.  One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle , 2002 .

[58]  K. Davidson,et al.  Modelling the influence of silicon and phosphorus limitation on the growth and toxicity of Pseudo-nitzschia seriata , 2006 .

[59]  Antonio J. Busalacchi,et al.  Environmental signatures associated with cholera epidemics , 2008, Proceedings of the National Academy of Sciences.

[60]  N. Nagelkerke,et al.  A note on a general definition of the coefficient of determination , 1991 .

[61]  Keon Tae Sohn,et al.  Guidance on the choice of threshold for binary forecast modeling , 2008 .

[62]  M. Brzezinski,et al.  Empirical models of toxigenic Pseudo-nitzschia blooms: Potential use as a remote detection tool in the Santa Barbara Channel , 2009 .

[63]  Donald M. Anderson,et al.  Physiological ecology of harmful algal blooms , 1998 .

[64]  Paul A. Montagna,et al.  Disruption of grazer populations as a contributing factor to the initiation of the Texas brown tide algal bloom , 1997 .

[65]  Yvonne Freeh,et al.  An R and S–PLUS Companion to Applied Regression , 2004 .

[66]  R. Margalef Life-forms of phytoplankton as survival alternatives in an unstable environment , 1978 .

[67]  S. Swaminathan,et al.  Development of statistical models for prediction of the neurotoxin domoic acid levels in the pennate diatom Pseudo-nitzschia pungens f. multiseries utilizing data from cultures and natural blooms. , 2006 .

[68]  Raghu Murtugudde,et al.  Regional Earth System prediction: a decision-making tool for sustainability? , 2009 .

[69]  H. Marshall,et al.  A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries , 2005 .

[70]  Mark A. Moline,et al.  Synergistic applications of autonomous underwater vehicles and regional ocean modeling system in coastal ocean forecasting , 2008 .

[71]  Christopher J. Madden,et al.  Modeling of HABs and eutrophication: Status, advances, challenges , 2010 .

[72]  H. Paerl Nuisance phytoplankton blooms in coastal, estuarine, and inland waters1 , 1988 .

[73]  A. Agresti An introduction to categorical data analysis , 1997 .

[74]  G. Brush,et al.  Long-Term History of Chesapeake Bay Anoxia , 1991, Science.

[75]  Keith Davidson,et al.  GROWTH AND DOMOIC ACID PRODUCTION BY PSEUDO‐NITZSCHIA SERIATA (BACILLARIOPHYCEAE) UNDER PHOSPHATE AND SILICATE LIMITATION 1 , 2004 .

[76]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[77]  Russ E. Davis,et al.  Predictability of Sea Surface Temperature and Sea Level Pressure Anomalies over the North Pacific Ocean , 1976 .

[78]  Jiangtao Xu,et al.  Modeling biogeochemical cycles in Chesapeake Bay with a coupled physical biological model , 2006 .

[79]  R. Bidigare,et al.  Centers for Oceans and Human Health: a unified approach to the challenge of harmful algal blooms , 2008, Environmental health : a global access science source.

[80]  T. Gross,et al.  Predicting the distribution of the scyphomedusa Chrysaora quinquecirrha in Chesapeake Bay , 2007 .

[81]  Raphael M. Kudela,et al.  The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA , 2008 .

[82]  Youlian Pan,et al.  Effects of silicate limitation on production of domoic acid, a neurotoxin, by the diatom Pseudo-nitzschia multiseries. I. Batch culture studies , 1996 .

[83]  L. Edler,et al.  29 NOVEL AND NUISANCE PHYTOPLANKTON BLOOMS IN THE SEA : EVIDENCE FOR A GLOBAL EPIDEMIC , 2022 .

[84]  K. Baker,et al.  Evidence for phytoplankton succession and chromatic adaptation in the Sargasso Sea during spring 1985 , 1990 .

[85]  Libe Washburn,et al.  Circulation and environmental conditions during a toxigenic Pseudo-nitzschia australis bloom in the Santa Barbara Channel, California , 2006 .

[86]  Landsberg,et al.  Harmful algae 2002 , 2004 .

[87]  D. Stoecker,et al.  Distribution, Abundance and Domoic Acid Analysis of the Toxic Diatom Genus Pseudo-nitzschia from the Chesapeake Bay , 2008 .

[88]  Dale B. Haidvogel,et al.  Nitrogen cycling in the Middle Atlantic Bight: Results from a three‐dimensional model and implications for the North Atlantic nitrogen budget , 2006 .

[89]  N. Rabalais,et al.  Abundance and vertical flux of Pseudo-nitzschia in the northern Gulf of Mexico , 1997 .

[90]  Lora E Fleming,et al.  Impacts of climate variability and future climate change on harmful algal blooms and human health , 2008, Environmental health : a global access science source.

[91]  K. Bruland,et al.  Domoic acid binds iron and copper: a possible role for the toxin produced by the marine diatom Pseudo-nitzschia , 2001 .

[92]  C. Tomas,et al.  Identifying marine phytoplankton , 1997 .

[93]  Van Dolah Fm Marine algal toxins: origins, health effects, and their increased occurrence. , 2000 .

[94]  Richard P. Stumpf,et al.  Evaluation of the use of SeaWiFS imagery for detecting Karenia brevis harmful algal blooms in the eastern Gulf of Mexico , 2004 .

[95]  S. Bates,et al.  Bloom Dynamics and Physiology of Domoic-Acid-Producing Pseudo-nitzschia Species , 2001 .

[96]  V. Trainer,et al.  Recent domoic acid closures of shellfish harvest areas in Washington State inland waterways , 2007 .

[97]  Roman Marin,et al.  Mortality of sea lions along the central California coast linked to a toxic diatom bloom , 2000, Nature.

[98]  Engel G. Vrieling,et al.  TOXIC PHYTOPLANKTON BLOOMS IN THE SEA , 1993 .

[99]  M. Silver,et al.  Feeding responses of krill to the toxin-producing diatom Pseudo-nitzschia , 2003 .

[100]  R. Kudela,et al.  Inorganic and organic nitrogen uptake by the toxigenic diatom Pseudo-nitzschia australis (Bacillariophyceae) , 2008 .

[101]  E. Levin,et al.  Persistent neurobehavioral effects of early postnatal domoic acid exposure in rats. , 2006, Neurotoxicology and teratology.

[102]  M. Lomas,et al.  Ammonium release by nitrogen sufficient diatoms in response to rapid increases in irradiance , 2000 .

[103]  P. Doering,et al.  Mixing behavior of dissolved organic carbon and its potential biological significance in the Pawcatuck River Estuary , 1994 .

[104]  R. P. Stumpfa,et al.  Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data , 2003 .

[105]  Subba M. Rao Algal cultures, analogues of blooms and applications , 2006 .