Application of Convolutional Neural Network on Lei Bamboo Above-Ground-Biomass (AGB) Estimation Using Worldview-2

[1]  Ling Tong,et al.  Rice biomass retrieval from multitemporal ground-based scatterometer data and RADARSAT-2 images using neural networks , 2013 .

[2]  Janet E. Nichol,et al.  Improved Biomass Estimation Using the Texture Parameters of Two High-Resolution Optical Sensors , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[3]  D. Lu Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon , 2005 .

[4]  J. Eitel,et al.  High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne lidar and imagery , 2016 .

[5]  P. Atkinson,et al.  Relating SAR image texture to the biomass of regenerating tropical forests , 2005 .

[6]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[7]  J. Macgregor,et al.  Image texture analysis: methods and comparisons , 2004 .

[8]  Y. Hu,et al.  Mapping the height and above‐ground biomass of a mixed forest using lidar and stereo Ikonos images , 2008 .

[9]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[10]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[11]  Chunying Ren,et al.  Estimation of Forest Above-Ground Biomass by Geographically Weighted Regression and Machine Learning with Sentinel Imagery , 2018, Forests.

[12]  Marco A. Peña,et al.  Aboveground biomass estimation in intervened and non-intervened Nothofagus pumilio forests using remotely sensed data , 2012 .

[13]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[14]  Hongxing Liu,et al.  Retrieval of Mangrove Aboveground Biomass at the Individual Species Level with WorldView-2 Images , 2015, Remote. Sens..

[15]  R. Dubin,et al.  Spatial Autocorrelation: A Primer , 1998 .

[16]  Lijuan Liu,et al.  A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems , 2016, Int. J. Digit. Earth.

[17]  Giles M. Foody,et al.  Mapping the biomass of Bornean tropical rain forest from remotely sensed data , 2001 .

[18]  W. Verhoef,et al.  Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression , 2013 .

[19]  Fang Liu,et al.  A Novel Neural Network for Remote Sensing Image Matching , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[20]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[21]  Flor Álvarez-Taboada,et al.  Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression , 2013, Sensors.

[22]  W. Cohen,et al.  Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics , 2014 .

[23]  G. Foody,et al.  Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions , 2012 .

[24]  Thomas R. Crow,et al.  Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA , 2004 .

[25]  Onisimo Mutanga,et al.  Estimating Biomass of Native Grass Grown under Complex Management Treatments Using WorldView-3 Spectral Derivatives , 2017, Remote. Sens..

[26]  Onisimo Mutanga,et al.  High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[27]  Onisimo Mutanga,et al.  Intra-and-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral RapidEye Sensor and Advanced Machine Learning Algorithms , 2014, Sensors.

[28]  Elfatih M. Abdel-Rahman,et al.  Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data , 2013 .

[29]  Sandra Eckert,et al.  Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data , 2012, Remote. Sens..

[30]  Xuejian Li,et al.  Estimating and Analyzing the Spatiotemporal Pattern of Aboveground Carbon in Bamboo Forest by Combining Remote Sensing Data and Improved BIOME-BGC Model , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[31]  Sakari Tuominen,et al.  Performance of different spectral and textural aerial photograph features in multi-source forest inventory , 2005 .

[32]  Mario Chica-Olmo,et al.  Computing geostatistical image texture for remotely sensed data classification , 2000 .

[33]  Kitsanai Charoenjit,et al.  Estimation of biomass and carbon stock in Para rubber plantations using object-based classification from Thaichote satellite data in Eastern Thailand , 2015 .

[34]  Shirong Liu,et al.  Seasonal Timing for Estimating Carbon Mitigation in Revegetation of Abandoned Agricultural Land with High Spatial Resolution Remote Sensing , 2017, Remote. Sens..

[35]  F. M. Danson,et al.  Satellite remote sensing of forest resources: three decades of research development , 2005 .

[36]  W. Cohen,et al.  Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery , 1992 .

[37]  Y. Ouma,et al.  Optimization of Second-Order Grey-Level Texture in High-Resolution Imagery for Statistical Estimation of Above-Ground Biomass , 2006 .

[38]  Mryka Hall-Beyer,et al.  Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales , 2017 .

[39]  Yunlong Yu,et al.  Dense Connectivity Based Two-Stream Deep Feature Fusion Framework for Aerial Scene Classification , 2018, Remote. Sens..

[40]  S. K. McFeeters The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features , 1996 .

[41]  Zhenfeng Shao,et al.  Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data , 2019, Remote. Sens..

[42]  Miaozhong Xu,et al.  DenseNet-Based Depth-Width Double Reinforced Deep Learning Neural Network for High-Resolution Remote Sensing Image Per-Pixel Classification , 2018, Remote. Sens..

[43]  Jeffrey P. Walker,et al.  Airborne multi-temporal L-band polarimetric SAR data for biomass estimation in semi-arid forests , 2014 .

[44]  Weiqi Zhou,et al.  A new approach for land cover classification and change analysis: Integrating backdating and an object-based method , 2016 .

[45]  H. Du,et al.  Spatiotemporal evolution and impacts of climate change on bamboo distribution in China. , 2019, Journal of environmental management.

[46]  Yong Pang,et al.  Mapping Aboveground Biomass using Texture Indices from Aerial Photos in a Temperate Forest of Northeastern China , 2016, Remote. Sens..

[47]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[48]  R. K. Dixon,et al.  Carbon Pools and Flux of Global Forest Ecosystems , 1994, Science.

[49]  Siyuan Wang,et al.  Estimation of tropical forest biomass using Landsat TM imagery and permanent plot data in Xishuangbanna, China , 2011 .

[50]  C. A. Campbell,et al.  Some perspectives on carbon sequestration in agriculture , 2007 .

[51]  Hui Lin,et al.  Impacts of Plot Location Errors on Accuracy of Mapping and Scaling Up Aboveground Forest Carbon Using Sample Plot and Landsat TM Data , 2013, IEEE Geoscience and Remote Sensing Letters.

[52]  A. Baccini,et al.  Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda , 2012 .

[53]  Gustavo Camps-Valls,et al.  Retrieval of oceanic chlorophyll concentration with relevance vector machines , 2006 .

[54]  S. Vincenzi,et al.  Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy , 2011 .

[55]  Asghar Fallah,et al.  Forest attribute imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms , 2012 .

[56]  P. Hostert,et al.  Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites , 2014 .