Large tunable elastocaloric effect in additively manufactured Ni–Ti shape memory alloys

[1]  Hong Chen,et al.  Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement , 2019, Scripta Materialia.

[2]  Narges Shayesteh Moghaddam,et al.  Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment , 2019, Scientific Reports.

[3]  Hong Chen,et al.  Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%) alloy , 2018, Acta Materialia.

[4]  A. Schütze,et al.  NiTi-Based Elastocaloric Cooling on the Macroscale: From Basic Concepts to Realization , 2018, Energy Technology.

[5]  M. Brojan,et al.  Elastocaloric effect vs fatigue life: Exploring the durability limits of Ni-Ti plates under pre-strain conditions for elastocaloric cooling , 2018 .

[6]  Chee Kai Chua,et al.  A Review of Selective Laser Melted NiTi Shape Memory Alloy , 2018, Materials.

[7]  Amirhesam Amerinatanzi,et al.  On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi , 2018 .

[8]  J. Cui,et al.  Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat , 2017 .

[9]  H. Sehitoglu,et al.  Elastocaloric cooling capacity of shape memory alloys – Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation , 2017 .

[10]  Albert C. To,et al.  Quantitative texture prediction of epitaxial columnar grains in additive manufacturing using selective laser melting , 2017 .

[11]  X. Liang,et al.  Elastocaloric effect induced by the rubber-like behavior of nanocrystalline wires of a Ti-50.8Ni (at.%) alloy , 2017 .

[12]  Yandong Wang,et al.  Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys , 2017 .

[13]  J. Eckert,et al.  Is the energy density a reliable parameter for materials synthesis by selective laser melting? , 2017 .

[14]  L. Mañosa,et al.  Materials with Giant Mechanocaloric Effects: Cooling by Strength , 2017, Advanced materials.

[15]  Jean-Pierre Kruth,et al.  On the Transformation Behavior of NiTi Shape-Memory Alloy Produced by SLM , 2016, Shape Memory and Superelasticity.

[16]  Amirhesam Amerinatanzi,et al.  Fabrication of NiTi through additive manufacturing: A review , 2016 .

[17]  C. Emmelmann,et al.  Additive Manufacturing of Metals , 2016 .

[18]  Nini Pryds,et al.  A regenerative elastocaloric heat pump , 2016, Nature Energy.

[19]  M. Elahinia,et al.  The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting , 2016 .

[20]  M. Kohl,et al.  Energy-efficient miniature-scale heat pumping based on shape memory alloys , 2016 .

[21]  Lai‐Chang Zhang,et al.  Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review   , 2016 .

[22]  J. Cui,et al.  A review of elastocaloric cooling: materials, cycles and system integrations. , 2016 .

[23]  Yunho Hwang,et al.  Design of a hydraulically driven compressive elastocaloric cooling system , 2016 .

[24]  Jean-Pierre Kruth,et al.  Texture and anisotropy in selective laser melting of NiTi alloy , 2016 .

[25]  W. Li,et al.  Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate , 2015, Nature Communications.

[26]  N. Shamsaei,et al.  An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics , 2015 .

[27]  Yong Liu,et al.  3D printing of smart materials: A review on recent progresses in 4D printing , 2015 .

[28]  Lars Pilgaard Mikkelsen,et al.  The Elastocaloric Effect: A Way to Cool Efficiently , 2015 .

[29]  Stefan Seelecke,et al.  Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes , 2015 .

[30]  Eckhard Quandt,et al.  Ultralow-fatigue shape memory alloy films , 2015, Science.

[31]  R. Drautz,et al.  On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys , 2015 .

[32]  Xuejun Jin,et al.  Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2Pd (at.%) alloy , 2015 .

[33]  Jean-Pierre Kruth,et al.  Influence of SLM on shape memory and compression behaviour of NiTi scaffolds , 2015 .

[34]  M. Kohl,et al.  Evolution of temperature profiles in TiNi films for elastocaloric cooling , 2014 .

[35]  M. Barnett,et al.  Thermomechanical properties of Ni-Ti shape memory wires containing nanoscale precipitates induced by stress-assisted ageing. , 2014, Acta biomaterialia.

[36]  David Dean,et al.  Metals for bone implants. Part 1. Powder metallurgy and implant rendering. , 2014, Acta biomaterialia.

[37]  Horst Meier,et al.  On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing , 2014 .

[38]  Jean-Pierre Kruth,et al.  Effect of SLM Parameters on Transformation Temperatures of Shape Memory Nickel Titanium Parts , 2014 .

[39]  Bert Müller,et al.  Microstructure of selective laser melted nickel–titanium , 2014 .

[40]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .

[41]  L. Mañosa,et al.  Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys , 2013 .

[42]  Weidong Huang,et al.  Microstructural changes in a laser solid forming Inconel 718 superalloy thin wall in the deposition direction , 2013 .

[43]  H Meier,et al.  The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting. , 2013, Materials science & engineering. C, Materials for biological applications.

[44]  Horst Meier,et al.  On the Properties of Ni-Rich NiTi Shape Memory Parts Produced by Selective Laser Melting , 2012 .

[45]  A. Tishin,et al.  Recent progress in magnetocaloric effect: Mechanisms and potential applications , 2012 .

[46]  M. Wuttig,et al.  Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires , 2012 .

[47]  Bert Müller,et al.  Tailoring Selective Laser Melting Process Parameters for NiTi Implants , 2012, Journal of Materials Engineering and Performance.

[48]  M. Elahinia,et al.  Manufacturing and processing of NiTi implants: A review , 2012 .

[49]  L. Murr,et al.  Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies , 2012 .

[50]  L. Mañosa,et al.  Temperature contour maps at the strain-induced martensitic transition of a Cu–Zn–Al shape-memory single crystal , 2011 .

[51]  I. Karaman,et al.  High temperature shape memory alloys , 2010 .

[52]  Mehmet Acet,et al.  Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. , 2010, Nature materials.

[53]  Gunther Eggeler,et al.  Elementary Transformation and Deformation Processes and the Cyclic Stability of NiTi and NiTiCu Shape Memory Spring Actuators , 2009 .

[54]  L. Mañosa,et al.  Elastocaloric effect associated with the martensitic transition in shape-memory alloys. , 2008, Physical review letters.

[55]  Yifu Shen,et al.  Balling phenomena during direct laser sintering of multi-component Cu-based metal powder , 2007 .

[56]  Robert P. Mudge,et al.  Laser engineered net shaping advances additive manufacturing and repair , 2007 .

[57]  N. D. Mathur,et al.  Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 , 2005, Science.

[58]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[59]  L. Froyen,et al.  Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting , 2004 .

[60]  K. Weinert,et al.  Machining of NiTi based shape memory alloys , 2004 .

[61]  H. Karnthaler,et al.  Martensitic phase transformations in nanocrystalline NiTi studied by TEM , 2004 .

[62]  Gunther Eggeler,et al.  Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations , 2002 .

[63]  Arata Masuda,et al.  An overview of vibration and seismic applications of NiTi shape memory alloy , 2002 .

[64]  H. Maier,et al.  Instrumented micro-indentation of NiTi shape-memory alloys , 2001 .

[65]  Jan Van Humbeeck,et al.  Non-medical applications of shape memory alloys , 1999 .

[66]  N. Dahotre,et al.  Thermal effects associated with stress-induced martensitic transformation in a TiNi alloy , 1985 .