Naturally produced crystals obtained from kidney stones are less injurious to renal tubular epithelial cells than synthetic crystals

To determine the differences in cell responses to synthetic and biological crystals of calcium oxalate (CaOx) and brushite

[1]  F. F. B. YANIKa,et al.  Hypertriglyceridemia-Induced Acute Pancreatitis During Pregnancy: Editorial Comment , 2018 .

[2]  M. Ward,et al.  Role of crystal surface adhesion in kidney stone disease , 2006, Current opinion in nephrology and hypertension.

[3]  G. H. Nancollas,et al.  Dual roles of brushite crystals in calcium oxalate crystallization provide physicochemical mechanisms underlying renal stone formation. , 2006, Kidney international.

[4]  J. Lingeman,et al.  Randall's plaque: pathogenesis and role in calcium oxalate nephrolithiasis. , 2006, Kidney international.

[5]  C. Bangma,et al.  Oxalate is toxic to renal tubular cells only at supraphysiologic concentrations. , 2005, Kidney international.

[6]  R. Ryall,et al.  Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals , 2005, BJU international.

[7]  J. Hothersall,et al.  Crystal and microparticle effects on MDCK cell superoxide production: oxalate-specific mitochondrial membrane potential changes. , 2005, Free radical biology & medicine.

[8]  G. H. Nancollas,et al.  Modulation of calcium oxalate monohydrate crystallization by citrate through selective binding to atomic steps. , 2005, Journal of the American Chemical Society.

[9]  H. Uemura,et al.  Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK 52E cells. , 2005, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[10]  Saeed R. Khan Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies , 2004, Journal of Clinical and Experimental Nephrology.

[11]  D. Kok,et al.  Modulators of urinary stone formation. , 2004, Frontiers in bioscience : a journal and virtual library.

[12]  Saeed R. Khan,et al.  Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development , 2004, Urological Research.

[13]  Saeed R. Khan,et al.  Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. , 2003, Kidney international.

[14]  N. Chegini,et al.  Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate, phosphate and uric acid crystals. , 2003, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[15]  M. D. de Broe,et al.  Crystal retention capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and osteopontin in the transition of a crystal binding- into a nonadherent epithelium. , 2003, Journal of the American Society of Nephrology : JASN.

[16]  J. Jonassen,et al.  Mechanisms mediating oxalate-induced alterations in renal cell functions. , 2003, Critical reviews in eukaryotic gene expression.

[17]  A. Bhandari,et al.  COM Crystals Activate the p38 Mitogen-activated Protein Kinase Signal Transduction Pathway in Renal Epithelial Cells* , 2002, The Journal of Biological Chemistry.

[18]  Saeed R. Khan,et al.  Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. , 2002, The Journal of urology.

[19]  J. Hothersall,et al.  Mitochondrial superoxide production during oxalate-mediated oxidative stress in renal epithelial cells. , 2002, Free radical biology & medicine.

[20]  A. Bhandari,et al.  Oxalate Selectively Activates p38 Mitogen-activated Protein Kinase and c-Jun N-terminal Kinase Signal Transduction Pathways in Renal Epithelial Cells* , 2002, The Journal of Biological Chemistry.

[21]  Saeed R. Khan,et al.  EXPRESSION OF INTER-α INHIBITOR RELATED PROTEINS IN KIDNEYS AND URINE OF HYPEROXALURIC RATS , 2001 .

[22]  N. Evans,et al.  Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. , 2001, Journal of structural biology.

[23]  K. Byer,et al.  Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. , 2000, The Journal of urology.

[24]  H. Tiselius,et al.  Some aspects of the intratubular precipitation of calcium salts. , 1999, Journal of the American Society of Nephrology : JASN.

[25]  A. Peck,et al.  Expression of bikunin mRNA in renal epithelial cells after oxalate exposure. , 1999, The Journal of urology.

[26]  P. Glenton,et al.  Temporal changes in mRNA expression for bikunin in the kidneys of rats during calcium oxalate nephrolithiasis. , 1999, Journal of the American Society of Nephrology : JASN.

[27]  K. Barrett,et al.  Inhibition of Ca2+-dependent Cl- secretion in T84 cells: membrane target(s) of inhibition is agonist specific. , 1998, American journal of physiology. Cell physiology.

[28]  J. Lieske,et al.  Renal cell osteopontin production is stimulated by calcium oxalate monohydrate crystals , 1997 .

[29]  S. R. Khan,et al.  Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. , 1997, The Journal of urology.

[30]  S. R. Khan,et al.  Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. , 1997, The Journal of urology.

[31]  菊池 太朗,et al.  ラット椎間板皮下吸収モデルにおけるMCP-1(monocyte chemoattractant protein-1)の動向について , 1996 .

[32]  H. Koul,et al.  Oxalate toxicity in LLC-PK1 cells: role of free radicals. , 1996, Kidney international.

[33]  D. Bers,et al.  Steady-state twitch Ca2+ fluxes and cytosolic Ca2+ buffering in rabbit ventricular myocytes. , 1996, The American journal of physiology.

[34]  J. Lieske,et al.  Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. , 1995, The American journal of physiology.

[35]  F. Stapleton,et al.  Uric Acid Crystals , 1994 .

[36]  Saeed R. Khan,et al.  Role of organic matrix in urinary stone formation: an ultrastructural study of crystal matrix interface of calcium oxalate monohydrate stones. , 1993, The Journal of urology.

[37]  N. Mandel,et al.  Crystal-cell interactions: crystal binding to rat renal papillary tip collecting duct cells in culture. , 1991, American journal of kidney diseases : the official journal of the National Kidney Foundation.