Electric field-induced cell-to-cell fusion

Cell-to-cell fusion has great potential in membrane research, membrane reconstitution and genetic mapping [25, 34, 49]. Furthermore, both somatic hybridization and genetic engineering offer a way of modifying plant cells and, in turn, of improving crops [49, 53]. If lymphocyte cells are fused with a permanent cell line so-called hybridoma cells are produced [32] which are capable of producing monoclonal antibodies of predetermined antigenic specificity. These hybridoma cells (antibody-producing hybrids) can be envisaged as important tools in future clinical diagnosis and therapy as well as in the purification and enrichment of compounds of cell-biological and medical interest [18, 65, 72]. However, despite many promising results and considerable efforts, fusion still seems to be something of an art rather than a precise science. Phenomenologically, cell-to-cell fusion is achieved presently in vitro by chemicals or inactivated virus [2, 30, 31, 33, 34, 48, 64]. Fusion can usually only be achieved by using membrane-disrupting agents and procedures and/or unphysiological conditions (e.g., high Ca/+ concentrations, high or low pH values, hypotonic conditions, etc.) The field of chemically and virus-induced fusion has been excellently reviewed by several authors over the last years [17, 34, 45, 47, 48]. In view of the bewildering array of data on chemically and virusinduced fusion we are obliged to conclude that we are still far from solving the molecular mechanism underlying the fusion process. Any progress in this field and in the development of novel fusion techniques will have to be evaluated by comparison with the inherent limitations of the current fusion procedures, which are listed below:

[1]  Ernst Muth,et al.  Ueber die Erscheinung der Perlschnurkettenbildung von Emulsionspartikelchen unter Einwirkung eines Wechselfeldes , 1927 .

[2]  Freie und erzwungene Schwebungen , 1949 .

[3]  H. Fricke,et al.  The Maxwell-Wagner Dispersion in a Suspension of Ellipsoids , 1953 .

[4]  H. Schwan,et al.  On the Orientation of Nonspherical Particles in an Alternating Electrical Field , 1965 .

[5]  A.H.W. Nias,et al.  Advances in Biological and Medical Physics , 1966 .

[6]  H P Schwan,et al.  Response of nonspherical biological particles to alternating electric fields. , 1966, Biophysical journal.

[7]  Joe S. Crane,et al.  A Study of Living and Dead Yeast Cells Using Dielectrophoresis , 1968 .

[8]  Herman P. Schwan,et al.  Alternative‐Current Field‐Induced Forces and Their Biological Implications , 1969 .

[9]  W. Scher,et al.  Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Poste Mechanisms of virus-induced cell fusion. , 1972, International review of cytology.

[11]  W. Keller,et al.  The Effect of High pH and Calcium on Tobacco Leaf Protoplast Fusion , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[12]  C. Milstein,et al.  Continuous cultures of fused cells secreting antibody of predefined specificity , 1975, Nature.

[13]  A. W. Friend,et al.  Low frequency electric field induced changes in the shape and motility of amoebas. , 1975, Science.

[14]  J W Moore,et al.  Membranes, ions, and impulses: Dedication to Kacy Cole , 1975 .

[15]  A. Loyter,et al.  "Ultramicroinjection" of macromolecules or small particles into animal cells. A new technique based on virus-induced cell fusion , 1975, The Journal of cell biology.

[16]  M. Tazawa,et al.  Electric Characteristics and Cytoplasmic Streaming of Characeae Cells Lacking Tonoplast , 1976 .

[17]  E. Steudle,et al.  Turgor pressure sensing in plant cell membranes. , 1976, Plant physiology.

[18]  Ulrich Zimmermann,et al.  Effects of external electrical fields on cell membranes , 1976 .

[19]  U. Zimmermann,et al.  The effect of pressure on the electrical breakdown in the membranes of Valonia utricularis. , 1977, Biochimica et biophysica acta.

[20]  R D Allen,et al.  Cytoplasmic streaming in green plants. , 1978, Annual review of biophysics and bioengineering.

[21]  P. Ververgaert,et al.  Freeze-fracture morphology of biological membranes. , 1978, Biochimica et biophysica acta.

[22]  J. Lucy,et al.  Proteinases and cell fusion , 1978, FEBS letters.

[23]  U. Zimmermann Physics of Turgor- and Osmoregulation , 1978 .

[24]  J. Meunier Electrical phenomena at the biological membrane level, , Elsevier-North Holland ed., E. Roux. (1977), Amsterdam, $ 65.50. , 1978 .

[25]  M. Cignitti Electrical Phenomena at the Biological Membrane Level : E. Roux, Elsevier Scientific, Publishing Company Amsterdam, Oxford, New York (1977), XVI + 565 pp., U.S. $ 65.50/D. 160.00. , 1978 .

[26]  U. Zimmermann,et al.  Particles in a homogeneous electrical field: A model for the electrical breakdown of living cells in a coulter counter , 1979 .

[27]  P. F. Baker,et al.  The ‘leaky’ adrenal medullary cell A new preparation for investigating the mechanism of neurosecretion by exocytosis , 1979, Trends in Neurosciences.

[28]  R. Glaser,et al.  [Dielectrophoresis as basis for a new preparative cell separation method]. , 1979, Zeitschrift fur allgemeine Mikrobiologie.

[29]  R. Glaser,et al.  Dielektrophorese als Grundlage fr ein neues Verfahren zur prparativen Zelltrennung , 1979 .

[30]  Membrane Fusion and Deformation of Red Blood Cells by Electric Fields , 1980, Zeitschrift fur Naturforschung. Section C, Biosciences.

[31]  J. Lucy,et al.  Calcium-activated thiol-proteinase activity in the fusion of rat erythrocytes induced by benzyl alcohol. , 1980, The Biochemical journal.

[32]  R. Benz,et al.  Dependence of the Electrical Breakdown Voltage on the Charging Time in Valonia Utricularis , 1980 .

[33]  C. Parkison,et al.  Fusion of human erythrocytes induced by Sendai virus: freeze-fracture aspects. , 1980, Journal of cell science.

[34]  J. Zimmerberg,et al.  Micromolar Ca2+ stimulates fusion of lipid vesicles with planar bilayers containing a calcium-binding protein. , 1980, Science.

[35]  H. Koprowski,et al.  Production of human hybridomas secreting antibodies to measles virus , 1980, Nature.

[36]  Lymphocyte hybridomas: Current and anticipated application in cancer and transplantation research , 1980, Journal of surgical oncology.

[37]  R. Benz,et al.  Pulse-length dependence of the electrical breakdown in lipid bilayer membranes. , 1980, Biochimica et biophysica acta.

[38]  H. Kaplan,et al.  Human-human hybridomas producing monoclonal antibodies of predefined antigenic specificity. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[39]  W. J. Lucas,et al.  Plant membrane transport: current conceptual issues. , 1980 .

[40]  S. P. Spragg,et al.  Dielectric and Electronic Properties of Biological Materials , 1980 .

[41]  U. Zimmermann,et al.  Giant culture cells by electric field‐induced fusion , 1981, FEBS letters.

[42]  H. Hengartner,et al.  Somatic cell hybrids from frog lymphocytes and mouse myeloma cells. , 1981, Science.

[43]  F. Conti,et al.  Reversible electrical breakdown of squid giant axon membrane. , 1981, Biochimica et biophysica acta.

[44]  T. P. Stewart,et al.  Membrane fusion through point defects in bilayers. , 1981, Science.

[45]  R. Benz,et al.  The resealing process of lipid bilayers after reversible electrical breakdown. , 1981, Biochimica et biophysica acta.

[46]  S. McLaughlin,et al.  The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. , 1981, Biophysical journal.

[47]  U. Zimmermann,et al.  Electric Field‐induced Fusion of Sea Urchin Eggs , 1981, Development, growth & differentiation.

[48]  Studies of a human T lymphocyte antigen recognized by a monoclonal antibody. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[49]  U. Zimmermann,et al.  Zellen mit manipulierten Funktionen: Neue Perspektiven für Zellbiologie, Medizin und Technik , 1981 .

[50]  R. Rand Interacting phospholipid bilayers: measured forces and induced structural changes. , 1981, Annual review of biophysics and bioengineering.

[51]  Fusion of Avena sativa mesophyll cell protoplasts by electrical breakdown. , 1981, Biochimica et biophysica acta.

[52]  S. Pestka,et al.  Production of hybridomas secreting monoclonal antibodies to the human leukocyte interferons. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[53]  U. Zimmermann,et al.  Electrically Stimulated Fusion of Different Plant Cell Protoplasts : MESOPHYLL CELL AND GUARD CELL PROTOPLASTS OF VICIA FABA. , 1981, Plant physiology.

[54]  U. Zimmermann,et al.  Electric field‐induced fusion of isolated vacuoles and protoplasts of different developmental and metabolic provenience , 1981 .

[55]  Z Dordević,et al.  Biological effects of microwave radiation. , 1983, Arhiv za higijenu rada i toksikologiju.

[56]  U. Zimmermann,et al.  High frequency fusion of plant protoplasts by electric fields , 2004, Planta.

[57]  U. Zimmermann,et al.  Regular arrays of intramembranous particles in the plasmalemma of guard cell and mesophyll cell protoplasts of Vicia faba , 1980, Planta.

[58]  U. Zimmermann,et al.  Electric-field-stimulated fusion: Increased field stability of cells induced by pronase , 1981, Naturwissenschaften.

[59]  Electric field induced fusion of biological cells , 1980, Biophysics of structure and mechanism.

[60]  K. Kao,et al.  A method for high-frequency intergeneric fusion of plant protoplasts , 1974, Planta.

[61]  E. Neumann,et al.  Cell fusion induced by high electric impulses applied to Dictyostelium , 1980, Naturwissenschaften.

[62]  H. Ziegler,et al.  On the use of Avena protoplasts to study chloroplast development , 1980, Planta.

[63]  Giant human erythrocytes by electric-field-induced cell-to-cell fusion , 2005, Naturwissenschaften.

[64]  R. Benz,et al.  Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study , 1979, The Journal of Membrane Biology.

[65]  H. Passow Effects of pronase on passive ion permeability of the human red blood cell , 1971, The Journal of Membrane Biology.

[66]  U. Zimmermann,et al.  The mechanism of electrical breakdown in the membranes ofValonia utricularis , 1975, The Journal of Membrane Biology.

[67]  J. Vienken,et al.  Rotation of cells in an alternating electric field theory and experimental proof , 2005, The Journal of Membrane Biology.

[68]  R. Benz,et al.  Influence of membrane structure on ion transport through lipid bilayer membranes , 1978, The Journal of Membrane Biology.

[69]  R. Gilles,et al.  Electro-mechanical properties of human erythrocyte membranes: The pressure-dependence of potassium permeability , 1980, The Journal of Membrane Biology.

[70]  U. Zimmermann,et al.  Development of a new coulter counter system: Measurement of the volume, internal conductivity, and dielectric breakdown voltage of a single guard cell protoplast ofVicia faba , 2005, The Journal of Membrane Biology.

[71]  F. Bentrup,et al.  A study of dielectric membrane breakdown in theFucus egg , 1979, The Journal of Membrane Biology.