Inversion‐based deblending using migration operators

ABSTRACT In this paper, we compare the denoising‐ and inversion‐based deblending methods using Stolt migration operators. We use Stolt operator as a kernel to efficiently compute apex‐shifted hyperbolic Radon transform. Sparsity promoting transforms, such as Radon transform, can focus seismic data into a sparse model to separate signals, remove noise or interpolate missing traces. Therefore, Radon transforms are a suitable tool for either the denoising‐ or the inversion‐based deblending methods. The denoising‐based deblending treats blending interferences as random noise by sorting the data into new gathers, such as common receiver gather. In these gathers, blending interferences exhibit random structures due to the randomization of the source firing times. Alternatively, the inversion‐based deblending treats blending interferences as a signal, and the transform models this signal by incorporating the blending operator to formulate an inversion problem. We compare both methods using a robust inversion algorithm with sparse regularization. Results of synthetic and field data examples show that the inversion‐based deblending can produce more accurate signal separation for highly blended data.

[1]  Jingwei Hu,et al.  Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization , 2014 .

[2]  Brian Russell,et al.  Noise elimination and the Radon transform, Part 2 , 1990 .

[3]  A. Berkhout Changing the mindset in seismic data acquisition , 2008 .

[4]  Ken H. Matson,et al.  Marine Simultaneous Source OBS Survey Suitability for 4D Analysis , 2012 .

[5]  David Lumley,et al.  Time-lapse seismic reservoir monitoring , 2001 .

[6]  Yaxun Tang,et al.  Joint Preconditioned Least-squares Inversion of Simultaneous Source Time-lapse Seismic Data Sets , 2009 .

[7]  Craig J. Beasley,et al.  A 3D Wide-azimuth Field Test with Simultaneous Marine Sources , 2009 .

[8]  Gerrit Blacquière,et al.  Separation of blended data by iterative estimation and subtraction of blending interference noise , 2011 .

[9]  Yi Luo,et al.  Simultaneous Sources Separation Via Multi-Directional Vector-Median Filter , 2009 .

[10]  S. Treitel,et al.  Fast l p solution of large, sparse, linear systems: application to seismic travel time tomography , 1988 .

[11]  Mauricio D. Sacchi,et al.  Accurate interpolation with high-resolution time-variant Radon transforms , 2002 .

[12]  Manhong Guo,et al.  Source Separation of Simultaneous Source OBC Data , 2009 .

[13]  G. Hampson,et al.  Acquisition Using Simultaneous Sources , 2007 .

[14]  M. Sacchi,et al.  Separation and reconstruction of simultaneous source data via iterative rank reduction , 2015 .

[15]  Mauricio D. Sacchi,et al.  Sparse inversion of the Radon coefficients in the presence of erratic noise with application to simultaneous seismic source processing , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Juan I. Sabbione,et al.  Microseismic data denoising via an apex-shifted hyperbolic Radon transform , 2013 .

[17]  F. Herrmann,et al.  Randomization and repeatability in time-lapse marine acquisition , 2014 .

[18]  D. J. Verschuur,et al.  Combined focal and coherency-based deblending strategy , 2015 .

[19]  Rajiv Kumar,et al.  Source separation for simultaneous towed-streamer marine acquisition — A compressed sensing approach , 2015 .

[20]  Walt Lynn,et al.  Experimental investigation of interference from other seismic crews , 1987 .

[21]  Mauricio D. Sacchi,et al.  Fast simultaneous seismic source separation using Stolt migration and demigration operators , 2015 .

[22]  Brian Russell,et al.  Noise elimination and the Radon transform; Part 1 , 1990 .

[23]  G. Poole,et al.  Fast and robust deblending using Apex Shifted Radon transform , 2012 .

[24]  Mauricio D. Sacchi,et al.  Simultaneous source separation using a robust Radon transform , 2014 .

[25]  Felix J. Herrmann,et al.  Sparsity-promoting recovery from simultaneous data: a compressive sensing approach , 2011 .

[26]  Dan Hampson,et al.  Inverse Velocity Stacking For Multiple Elimination , 1986 .

[27]  Gerrit Blacquière,et al.  From Simultaneous Shooting to Blended Acquisition , 2008 .

[28]  M. Sacchi,et al.  Simultaneous reconstruction of seismic reflections and diffractions using a global hyperbolic Radon dictionary , 2018, GEOPHYSICS.

[29]  C. Mosher,et al.  Suppression of multiple reflections using the Radon transform , 1992 .

[30]  James Rickett,et al.  Simultaneous Source Separation By Sparse Radon Transform , 2008 .

[31]  Daniel Trad,et al.  Interpolation and multiple attenuation with migration operators , 2003 .

[32]  Bill Dragoset,et al.  Simultaneous Source Separation Using Dithered Sources , 2008 .

[33]  Margherita Maraschini,et al.  Source Separation by Iterative Rank Reduction - Theory and Applications , 2012 .

[34]  Simon Spitz,et al.  Simultaneous source separation: A prediction‐subtraction approach , 2008 .

[35]  Mohan M. Trivedi,et al.  Localized Radon transform-based detection of ship wakes in SAR images , 1995, IEEE Trans. Geosci. Remote. Sens..

[36]  Jon F. Claerbout,et al.  Velocity-stack and slant-stack stochastic inversion , 1985 .