暂无分享,去创建一个
[1] R. Nichol,et al. The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.
[2] Larry A. Wasserman,et al. Nonparametric Ridge Estimation , 2012, ArXiv.
[3] L. Wasserman,et al. Enhanced Mode Clustering , 2014 .
[4] Miguel Á. Carreira-Perpiñán,et al. Gaussian Mean-Shift Is an EM Algorithm , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] Alberto Rodríguez-Casal,et al. A plug-in rule for bandwidth selection in circular density estimation , 2012, Comput. Stat. Data Anal..
[6] Silvere Bonnabel,et al. Stochastic Gradient Descent on Riemannian Manifolds , 2011, IEEE Transactions on Automatic Control.
[7] Uwe Einmahl,et al. Uniform in bandwidth consistency of kernel-type function estimators , 2005 .
[8] M. Morse. Relations between the critical points of a real function of $n$ independent variables , 1925 .
[9] Suvrit Sra,et al. First-order Methods for Geodesically Convex Optimization , 2016, COLT.
[10] Charles C. Taylor,et al. Automatic bandwidth selection for circular density estimation , 2008, Comput. Stat. Data Anal..
[11] John P. Snyder,et al. An Album of Map Projections , 1989 .
[12] Yen-Chi Chen,et al. A tutorial on kernel density estimation and recent advances , 2017, 1704.03924.
[13] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[14] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[15] M. Skrutskie,et al. The Two Micron All Sky Survey (2MASS) , 2006 .
[16] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[17] Zhanyi Hu,et al. A note on the convergence of the mean shift , 2007, Pattern Recognit..
[18] Inderjit S. Dhillon,et al. Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..
[19] V. Rovenski,et al. Differential Geometry of Curves and Surfaces , 1952, Nature.
[20] Larry Wasserman,et al. All of Nonparametric Statistics (Springer Texts in Statistics) , 2006 .
[21] Dorin Comaniciu,et al. Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[22] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[23] W. Rudin. Principles of mathematical analysis , 1964 .
[24] Larry D. Hostetler,et al. The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.
[25] R. Smullyan. ANNALS OF MATHEMATICS STUDIES , 1961 .
[26] Z. Chengqing,et al. Central limit theorem for integrated square error of kernel estimators of spherical density , 2001 .
[27] M. Taylor,et al. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism , 2009 .
[28] Gabriela Hug,et al. Projected gradient descent on Riemannian manifolds with applications to online power system optimization , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[29] E. Giné,et al. Rates of strong uniform consistency for multivariate kernel density estimators , 2002 .
[30] C. Frye,et al. Spherical Harmonics in p Dimensions , 2012, 1205.3548.
[31] O. Hyrien,et al. Fast Nonparametric Density-Based Clustering of Large Datasets Using a Stochastic Approximation Mean-Shift Algorithm , 2016, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[32] Ming Tang,et al. Accelerated Convergence Using Dynamic Mean Shift , 2006, ECCV.
[33] Jussi Klemelä,et al. Estimation of Densities and Derivatives of Densities with Directional Data , 2000 .
[34] Joseph P. Romano. On weak convergence and optimality of kernel density estimates of the mode , 1988 .
[35] Wenceslao González-Manteiga,et al. Kernel density estimation for directional-linear data , 2012, J. Multivar. Anal..
[36] M. Wand,et al. ASYMPTOTICS FOR GENERAL MULTIVARIATE KERNEL DENSITY DERIVATIVE ESTIMATORS , 2011 .
[37] Yu. D. Burago,et al. A.D. Alexandrov spaces with curvature bounded below , 1992 .
[38] M. Talagrand. New concentration inequalities in product spaces , 1996 .
[39] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[40] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[41] Yizong Cheng,et al. Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[42] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[43] Eduardo Garc'ia-Portugu'es,et al. Exact risk improvement of bandwidth selectors for kernel density estimation with directional data , 2013, 1306.0517.
[44] Kellen Petersen August. Real Analysis , 2009 .
[45] Thomas Verdebout,et al. Applied Directional Statistics , 2018 .
[46] Youness Aliyari Ghassabeh,et al. A sufficient condition for the convergence of the mean shift algorithm with Gaussian kernel , 2015, J. Multivar. Anal..
[47] Marston Morse. The Foundations of a Theory of the Calculus of Variations in the Large in m-Space (Second Paper) , 1930 .
[48] L. Soderblom,et al. Martian planetwide crater distributions - Implications for geologic history and surface processes , 1974 .
[49] Stan Z. Li,et al. Stochastic gradient kernel density mode-seeking , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.
[50] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[51] Suvrit Sra,et al. A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of Is(x) , 2012, Comput. Stat..
[52] Miguel Á. Carreira-Perpiñán,et al. Generalised blurring mean-shift algorithms for nonparametric clustering , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[53] D. Pollard,et al. $U$-Processes: Rates of Convergence , 1987 .
[54] Nadine G. Barlow,et al. Constraining geologic properties and processes through the use of impact craters , 2015 .
[55] David Mason,et al. On the Estimation of the Gradient Lines of a Density and the Consistency of the Mean-Shift Algorithm , 2016, J. Mach. Learn. Res..
[56] Sébastien Bubeck,et al. Convex Optimization: Algorithms and Complexity , 2014, Found. Trends Mach. Learn..
[57] Youness Aliyari Ghassabeh,et al. On the convergence of the mean shift algorithm in the one-dimensional space , 2013, Pattern Recognit. Lett..
[58] Philippe Vieu,et al. A note on density mode estimation , 1996 .
[59] Dorin Comaniciu,et al. Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[60] P. Hall,et al. Kernel density estimation with spherical data , 1987 .
[61] Charles C. Taylor,et al. Kernel density estimation on the torus , 2011 .
[62] Miguel Á. Carreira-Perpiñán,et al. A review of mean-shift algorithms for clustering , 2015, ArXiv.
[63] K. Priestley,et al. Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structure, and their rheological implications , 2011 .
[64] Martin J. Wainwright,et al. Statistical guarantees for the EM algorithm: From population to sample-based analysis , 2014, ArXiv.
[65] Calyampudi R. Rao,et al. Kernel estimators of density function of directional data , 1988 .
[66] Miguel Á. Carreira-Perpiñán,et al. Fast nonparametric clustering with Gaussian blurring mean-shift , 2006, ICML.
[68] Robert E. Mahony,et al. An Extrinsic Look at the Riemannian Hessian , 2013, GSI.