Generalized Directional Derivatives and Subgradients of Nonconvex Functions

Studies of optimization problems and certain kinds of differential equations have led in recent years to the development of a generalized theory of differentiation quite distinct in spirit and range of application from the one based on L. Schwartz's “distributions.” This theory associates with an extended-real-valued function ƒ on a linear topological space E and a point x ∈ E certain elements of the dual space E* called subgradients or generalized gradients of ƒ at x. These form a set ∂ƒ(x) that is always convex and weak*-closed (possibly empty). The multifunction ∂ƒ: x →∂ƒ(x) is the sub differential of ƒ. Rules that relate ∂ƒ to generalized directional derivatives of ƒ, or allow ∂ƒ to be expressed or estimated in terms of the subdifferentials of other functions (whenƒ = ƒ1 + ƒ2,ƒ = g o A, etc.), comprise the sub differential calculus.

[1]  Hlawka Theory of the integral , 1939 .

[2]  L. Hörmander Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .

[3]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[4]  C. Berge,et al.  Espaces topologiques : fonctions multivoques , 1966 .

[5]  R. Rockafellar,et al.  Conjugate convex functions in optimal control and the calculus of variations , 1970 .

[6]  Dual Operations on Saddle Functions. , 1973 .

[7]  Albert Feuer An implementable mathematical programming algorithm for admissible-fundamental functions. , 1974 .

[8]  F. Clarke,et al.  Topological Geometry: THE INVERSE FUNCTION THEOREM , 1981 .

[9]  Frank H. Clarke,et al.  A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..

[10]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[11]  Robert Mifflin,et al.  An Algorithm for Constrained Optimization with Semismooth Functions , 1977, Math. Oper. Res..

[12]  A. A. Goldstein,et al.  Optimization of lipschitz continuous functions , 1977, Math. Program..

[13]  Frank H. Clarke Multiple integrals of Lipschitz functions in the calculus of variations , 1977 .

[14]  Jean-Baptiste Hiriart-Urruty,et al.  On optimality conditions in nondifferentiable programming , 1978, Math. Program..

[15]  R. Rockafellar,et al.  The Optimal Recourse Problem in Discrete Time: $L^1 $-Multipliers for Inequality Constraints , 1978 .

[16]  J. Hiriart-Urruty,et al.  Gradients Généralisés de Fonctions Marginales , 1978 .

[17]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .

[18]  R. Rockafellar,et al.  Clarke's tangent cones and the boundaries of closed sets in Rn , 1979 .

[19]  J. B. Hiriart-Urruty,et al.  Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces , 1979, Math. Oper. Res..

[20]  R. Rockafellar Directionally Lipschitzian Functions and Subdifferential Calculus , 1979 .

[21]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 2: Conditions of Levitin–Miljutin–Osmolovskii Type , 1979 .

[22]  Jacques Gauvin,et al.  The Generalized Gradient of a Marginal Function in Mathematical Programming , 1979, Math. Oper. Res..

[23]  Frank H. Clarke,et al.  The Erdmann Condition and Hamiltonian Inclusions in Optimal Control and the Calculus of Variations , 1980, Canadian Journal of Mathematics.

[24]  F. Clarke Generalized gradients of Lipschitz functionals , 1981 .