Generalized Directional Derivatives and Subgradients of Nonconvex Functions
暂无分享,去创建一个
[1] Hlawka. Theory of the integral , 1939 .
[2] L. Hörmander. Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .
[3] G. Minty. Monotone (nonlinear) operators in Hilbert space , 1962 .
[4] C. Berge,et al. Espaces topologiques : fonctions multivoques , 1966 .
[5] R. Rockafellar,et al. Conjugate convex functions in optimal control and the calculus of variations , 1970 .
[6] Dual Operations on Saddle Functions. , 1973 .
[7] Albert Feuer. An implementable mathematical programming algorithm for admissible-fundamental functions. , 1974 .
[8] F. Clarke,et al. Topological Geometry: THE INVERSE FUNCTION THEOREM , 1981 .
[9] Frank H. Clarke,et al. A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..
[10] R. Mifflin. Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .
[11] Robert Mifflin,et al. An Algorithm for Constrained Optimization with Semismooth Functions , 1977, Math. Oper. Res..
[12] A. A. Goldstein,et al. Optimization of lipschitz continuous functions , 1977, Math. Program..
[13] Frank H. Clarke. Multiple integrals of Lipschitz functions in the calculus of variations , 1977 .
[14] Jean-Baptiste Hiriart-Urruty,et al. On optimality conditions in nondifferentiable programming , 1978, Math. Program..
[15] R. Rockafellar,et al. The Optimal Recourse Problem in Discrete Time: $L^1 $-Multipliers for Inequality Constraints , 1978 .
[16] J. Hiriart-Urruty,et al. Gradients Généralisés de Fonctions Marginales , 1978 .
[17] A. Ioffe. Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .
[18] R. Rockafellar,et al. Clarke's tangent cones and the boundaries of closed sets in Rn , 1979 .
[19] J. B. Hiriart-Urruty,et al. Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces , 1979, Math. Oper. Res..
[20] R. Rockafellar. Directionally Lipschitzian Functions and Subdifferential Calculus , 1979 .
[21] A. Ioffe. Necessary and Sufficient Conditions for a Local Minimum. 2: Conditions of Levitin–Miljutin–Osmolovskii Type , 1979 .
[22] Jacques Gauvin,et al. The Generalized Gradient of a Marginal Function in Mathematical Programming , 1979, Math. Oper. Res..
[23] Frank H. Clarke,et al. The Erdmann Condition and Hamiltonian Inclusions in Optimal Control and the Calculus of Variations , 1980, Canadian Journal of Mathematics.
[24] F. Clarke. Generalized gradients of Lipschitz functionals , 1981 .