Quantum computing algorithm for electromagnetic field simulation

Quantum computing offers new concepts for the simulation of complex physical systems. A quantum computing algorithm for electromagnetic field simulation is presented here. The electromagnetic field simulation is performed on the basis of the Transmission Line Matrix (TLM) method. The Hilbert space formulation of TLM allows us to obtain a time evolution operator for the TLM method, which can then be interpreted as the time evolution operator of a quantum system, thus yielding a quantum computing algorithm. Further, the quantum simulation is done within the framework of the quantum circuit model of computation. Our aim has been to address the design problem in electromagnetics—given an initial condition and a final field distribution, find the structures which satisfy these. Quantum computing offers us the possibility to solve this problem from first principles. Using quantum parallelism we simulate a large number of electromagnetic structures in parallel in time and then try to filter out the ones which have the required field distribution.

[1]  D. Averin Quantum Computing and Quantum Measurement with Mesoscopic Josephson Junctions , 2000, quant-ph/0008114.

[2]  Jacob M. Taylor,et al.  Dephasing of Quantum Bits by a Quasi-Static Mesoscopic Environment , 2006, Quantum Inf. Process..

[3]  Karl F. Warnick,et al.  Problems Solving in Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering , 2003 .

[4]  Lov K. Grover Beyond Factorization and Search , 1998, Science.

[5]  Wolfgang J. R. Hoefer,et al.  The Transmission-Line Matrix Method--Theory and Applications , 1985 .

[6]  Peter Russer,et al.  Electromagnetics, Microwave Circuit, And Antenna Design for Communications Engineering, Second Edition (Artech House Antennas and Propagation Library) , 2006 .

[7]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[8]  M. Freiser,et al.  A survey of some physical limitations on computer elements , 1969 .

[9]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[10]  J. Yepez TYPE-II QUANTUM COMPUTERS , 2001 .

[11]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[12]  Peter Russer,et al.  Applications of TLM to EMC Problems , 2000 .

[13]  J. Yepez,et al.  Quantum lattice-gas model for computational fluid dynamics. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  C. Christopoulos,et al.  The Transmission-line Modeling Method: TLM , 1995, IEEE Antennas and Propagation Magazine.

[15]  Jeffrey Yepez,et al.  QUANTUM LATTICE-GAS MODEL FOR THE DIFFUSION EQUATION , 2001 .

[16]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  Jeffrey Yepez,et al.  Experimental Demonstration of Quantum Lattice Gas Computation , 2003, Quantum Inf. Process..

[18]  Stefano Longhi Spiral waves in optical parametric oscillators , 2001 .

[19]  Lov K. Grover Quantum computers can search arbitrarily large databases by a single query , 1997 .

[20]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[21]  J. Yepez,et al.  Quantum Lattice-Gas Model for the Burgers Equation , 2002 .

[22]  Peter Russer,et al.  A field theoretical derivation of TLM , 1994 .

[23]  Jeffrey Yepez,et al.  Quantum Computation of Fluid Dynamics , 1998, QCQC.

[24]  Jeffrey Yepez,et al.  Simulation of the diffusion equation on a type-II quantum computer , 2002 .

[25]  A. Barenco Quantum Physics and Computers , 1996, quant-ph/9612014.

[26]  Barenco,et al.  Approximate quantum Fourier transform and decoherence. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[27]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[28]  David A Meyer Quantum computing classical physics , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Artur Ekert,et al.  Quantum algorithms: entanglement–enhanced information processing , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[31]  Jeffrey Yepez,et al.  Lattice-Gas Quantum Computation , 1998 .

[32]  Peter Russer,et al.  Application of TLM to Microwave Circuits , 2000 .

[33]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[34]  Karl Berggren,et al.  Quantum computing with superconductors , 2004, Proceedings of the IEEE.

[35]  Peter Russer,et al.  The hilbert space formulation of the TLM method , 1993 .

[36]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[37]  R. Feynman Simulating physics with computers , 1999 .

[38]  Peter Russer,et al.  Two‐dimensional FDTD and TLM , 1994 .

[39]  D. Abrams,et al.  NONLINEAR QUANTUM MECHANICS IMPLIES POLYNOMIAL-TIME SOLUTION FOR NP-COMPLETE AND P PROBLEMS , 1998, quant-ph/9801041.

[40]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..