Neuropathies périphériques douloureuses explorées par électrophysiologie conventionnelle et potentiels évoqués laser

RésuméUne neuropathie périphérique diffuse (polyneuropathie) peut être suspectée en cas de douleurs distales et symétriques des membres inférieurs. Dans ce cadre, la présence de sensation de brûlures plantaires est habituellement considérée comme un signe d’atteinte des fibres sensitives de petit calibre (A-delta et C). Cependant, cela est probablement inexact et les patients présentant des pieds douloureux forment un groupe hétérogène de sujets avec des neuropathies affectant tout autant les fibres sensitives de gros ou de petit calibre. Différentes méthodes neurophysiologiques sont applicables à la caractérisation des neuropathies douloureuses. Celles-ci incluent: 1) l’exploration électroneuromyographique conventionnelle, associant l’étude des conductions nerveuses et la détection électromyographique à l’aiguille; 2) l’enregistrement des réflexes H évaluant l’innervation proprioceptive; 3) l’enregistrement des réflexes cutanés sympathiques (RCS) évaluant l’innervation autonome des extrémités; 4) la mesure quantifiée des seuils de sensibilité à des stimuli mécaniques ou thermiques; 5) l’enregistrement des potentiels évoqués somesthésiques à la stimulation électrique (PES) ou laser (PEL). Une batterie d’exploration spécifique des petites fibres peut comprendre la quantification des seuils de sensibilité thermique, l’enregistrement des RCS et des PEL. Une batterie d’exploration spécifique des grosses fibres sensitives peut comprendre la quantification des seuils de sensibilité mécanique, l’enregistrement des réflexes H et des PES. La comparaison des résultats respectifs obtenus par ces deux batteries de tests aurait une certaine pertinence pour caractériser les mécanismes de la douleur dans le cadre des neuropathies douloureuses. Mais dans tous les cas, l’exploration électroneuromyographique conventionnelle reste l’examen de première intention. Dans ce texte, nous présenterons ces différentes méthodes neurophysiologiques en développant plus spécifiquement l’intérêt des PEL dans le diagnostic des neuropathies « petites fibres ».AbstractDiffuse peripheral neuropathy (polyneuropathy) can be suspected in case of distal, symmetric pain affecting the lower limbs. Burning feet is usually considered a sign of small-fiber neuropathy, but this statement is probably wrong. In fact, patients with painful feet are heterogeneous, presenting both large and small fiber sensory neuropathies. Various neurophysiological methods can be applied to characterize painful neuropathies. Neurophysiological testing includes: 1) conventional electroneuromyographic assessment, comprising nerve conduction studies and needle electromyography; 2) H-reflex recording to assess proprioceptive fibers; 3) sympathetic skin reflex (SSR) recording to assess autonomic fibers; 4) quantitative sensory testing (QST) to mechanical or thermal stimuli; 5) somatosensory evoked potentials to electrical (SSEP) or laser (LEP) stimulation. An electrophysiological battery, comprising thermal QST, SSR and LEP recordings, can be used to assess small nerve fibers. An electrophysiological battery, comprising mechanical QST, H-reflex and SSEP recordings, can be used to assess large nerve fibers. The comparative analysis of results provided by these two batteries of investigation could help determine pain mechanisms involved in painful neuropathies. However, conventional electroneuromyographic assessment remains the first-line test in all cases. In the present text, the various neurophysiological methods for the evaluation of peripheral neuropathy are presented with particular emphasis on the value of LEP recordings in the diagnosis of small-fiber neuropathies.

[1]  R. Treede,et al.  Evoked cerebral potential correlates of C-fibre activity in man , 1983, Neuroscience Letters.

[2]  E. Toft,et al.  Involvement of thin afferents in carpal tunnel syndrome: Evaluated quantitatively by argon laser stimulation , 1991, Muscle & nerve.

[3]  J. Spiegel,et al.  Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials , 2000, Clinical Neurophysiology.

[4]  D. Yarnitsky,et al.  Clinical applications of quantitative sensory testing (QST) , 1998, Journal of the Neurological Sciences.

[5]  D. Katzenstein,et al.  Severity of HIV-associated neuropathy is associated with plasma HIV-1 RNA levels , 2002, AIDS.

[6]  B. Bromm,et al.  Ultralate cerebral potentials in a patient with hereditary motor and sensory neuropathy type I indicate preserved C-fibre function. , 1991, Journal of neurology, neurosurgery, and psychiatry.

[7]  R Kakigi,et al.  Pain-Related somatosensory evoked potentials. , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[8]  S. Karamürsel,et al.  The 980‐nm diode laser as a new stimulant for laser evoked potentials studies , 2001, Lasers in surgery and medicine.

[9]  H. Krämer,et al.  Thermal thresholds predict painfulness of diabetic neuropathies. , 2004, Diabetes care.

[10]  M. Manfredi,et al.  Dysfunction of small myelinated afferents in diabetic polyneuropathy, as assessed by laser evoked potentials , 2000, Clinical Neurophysiology.

[11]  A. Carmon,et al.  Evoked cerebral responses to noxious thermal stimuli in humans , 1976, Experimental Brain Research.

[12]  V. P. Misra,et al.  Use of the novel contact heat evoked potential stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts , 2007, BMC neurology.

[13]  U. Baumgärtner,et al.  Clinical usefulness of laser-evoked potentials , 2003, Neurophysiologie Clinique/Clinical Neurophysiology.

[14]  G. Iannetti,et al.  Laser-evoked potentials: normative values , 2005, Clinical Neurophysiology.

[15]  J. Lorenz,et al.  Sensory deficits of a nerve root lesion can be objectively documented by somatosensory evoked potentials elicited by painful infrared laser stimulations: a case study. , 1996, Journal of neurology, neurosurgery, and psychiatry.

[16]  M. Frot,et al.  Brain generators of laser-evoked potentials: from dipoles to functional significance , 2003, Neurophysiologie Clinique/Clinical Neurophysiology.

[17]  M. Tseng,et al.  Patterns of contact heat evoked potentials (CHEP) in neuropathy with skin denervation: Correlation of CHEP amplitude with intraepidermal nerve fiber density , 2008, Clinical Neurophysiology.

[18]  D. Bouhassira,et al.  Painful and painless peripheral sensory neuropathies due to HIV infection: a comparison using quantitative sensory evaluation , 1999, Pain.

[19]  C. Sommer,et al.  Skin biopsy in the management of peripheral neuropathy , 2007, The Lancet Neurology.

[20]  R. Kakigi,et al.  Pain‐related somatosensory evoked potentials following CO2 laser stimulation in peripheral neuropathies , 1992, Acta neurologica Scandinavica.

[21]  L. Garcia-Larrea,et al.  Contribution of attentional and cognitive factors to laser evoked brain potentials , 2003, Neurophysiologie Clinique/Clinical Neurophysiology.

[22]  R. Kakigi,et al.  Estimation of conduction velocity of Aδ fibers in humans , 1991 .

[23]  R. Baron Peripheral Neuropathic Pain: From Mechanisms to Symptoms , 2000, The Clinical journal of pain.

[24]  Claudia Sommer,et al.  EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy , 2005 .

[25]  R. Kakigi,et al.  CO2 laser‐induced pain‐related somatosensory evoked potentials in peripheral neuropathies: Correlation between electrophysiological and histopathological findings , 1991, Muscle & nerve.

[26]  G. D. Iannetti,et al.  Laser evoked potentials for assessing sensory neuropathy in human patients , 2004, Neuroscience Letters.

[27]  Roland Peyron,et al.  Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. , 2002, Brain : a journal of neurology.

[28]  J. Lefaucheur,et al.  Laser evoked potentials using the Nd:YAG laser , 2001, Muscle & nerve.

[29]  M. Honda,et al.  Pain-related somatosensory evoked potentials following CO2 laser stimulation of foot in man. , 1989, Electroencephalography and clinical neurophysiology.

[30]  H. Diener,et al.  Correlation of epidermal nerve fiber density with pain-related evoked potentials in HIV neuropathy , 2008, PAIN.

[31]  J. Bourriez,et al.  Les potentiels évoqués au laser thulium. Valeurs normatives aux membres supérieurs et inférieurs , 2000, Neurophysiologie Clinique/Clinical Neurophysiology.

[32]  D. Bouhassira,et al.  Mechanisms of pain in peripheral neuropathy , 1999, Acta neurologica Scandinavica. Supplementum.

[33]  H. Nagaraja,et al.  Painful sensory neuropathy , 1999, Neurology.

[34]  J. Lefaucheur,et al.  Neurophysiological testing correlates with clinical examination according to fibre type involvement and severity in sensory neuropathy , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[35]  R. Treede,et al.  Quantitative sensory testing: a comprehensive protocol for clinical trials , 2006, European journal of pain.

[36]  B Bromm,et al.  Late somatosensory evoked cerebral potentials in response to cutaneous heat stimuli. , 1988, Electroencephalography and clinical neurophysiology.

[37]  D. Cros,et al.  Technology literature review: Quantitative sensory testing , 2004, Muscle & nerve.

[38]  J. Lefaucheur,et al.  Clinical application of laser evoked potentials using the Nd:YAG laser , 2002, Neurophysiologie Clinique/Clinical Neurophysiology.

[39]  Miroslav Backonja,et al.  Usefulness and limitations of quantitative sensory testing: Clinical and research application in neuropathic pain states , 2007, PAIN.

[40]  D. Yue,et al.  The Level of Small Nerve Fiber Dysfunction Does not Predict Pain in Diabetic Neuropathy: A Study Using Quantitative Sensory Testing , 2006, The Clinical journal of pain.

[41]  Massimiliano Valeriani,et al.  Functional assessment of Aδ and C fibers in patients with Fabry's disease , 2004 .