Neutron Star Mergers and Nucleosynthesis of Heavy Elements

The existence of neutron star mergers has been supported since the discovery of the binary pulsar and the observation of its orbital energy loss, consistent with General Relativity. They are considered nucleosynthesis sites of the rapid neutron-capture process (r-process), which is responsible for creating approximately half of all heavy elements beyond Fe and is the only source of elements beyond Pb and Bi. Detailed nucleosynthesis calculations based on the decompression of neutron star matter are consistent with solar r-process abundances of heavy nuclei. Neutron star mergers have also been identified with short-duration -ray bursts via their IR afterglow. The high neutron densities in ejected matter permit a violent r-process, leading to fission cycling of the heaviest nuclei in regions far from (nuclear) stability. Uncertainties in several nuclear properties affect the abundance distributions. The modeling of astrophysical events also depends on the hydrodynamic treatment, the occurrence of a neutrino...

[1]  Neutron star mergers versus core-collapse supernovae as dominant r-process sites in the early Galaxy , 2003, astro-ph/0309237.

[2]  Nucleosynthesis in the Outflow from Gamma-Ray Burst Accretion Disks , 2005, astro-ph/0509365.

[3]  T. Beers,et al.  Hubble Space Telescope Observations of Heavy Elements in Metal-Poor Galactic Halo Stars , 2005, astro-ph/0502591.

[4]  A. Davis Meteorites and Cosmochemical Processes , 2014 .

[5]  K. Hotokezaka,et al.  RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA , 2013, 1306.3742.

[6]  S. Rosswog,et al.  r-Process in Neutron Star Mergers , 1999, The Astrophysical journal.

[7]  Aya Bamba,et al.  Radioactive decay products in neutron star merger ejecta: heating efficiency and γ-ray emission , 2015, 1511.05580.

[8]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[9]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy , 2008 .

[10]  A. Perego,et al.  NEUTRINO-DRIVEN WINDS IN THE AFTERMATH OF A NEUTRON STAR MERGER: NUCLEOSYNTHESIS AND ELECTROMAGNETIC TRANSIENTS , 2015, 1506.05048.

[11]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[12]  A. Hewish,et al.  Evidence for an Unusual Source of High Radio Brightness Temperature in the Crab Nebula , 1965, Nature.

[13]  R. Hulse,et al.  Discovery of a pulsar in a binary system , 1975 .

[14]  C. Hansen,et al.  HOW MANY NUCLEOSYNTHESIS PROCESSES EXIST AT LOW METALLICITY? , 2014, 1408.4135.

[15]  K. Hebeler,et al.  EQUATION OF STATE AND NEUTRON STAR PROPERTIES CONSTRAINED BY NUCLEAR PHYSICS AND OBSERVATION , 2013, 1303.4662.

[16]  H. Janka,et al.  ELECTRON-CAPTURE SUPERNOVAE AS THE ORIGIN OF ELEMENTS BEYOND IRON , 2010, 1009.1000.

[17]  J. Lattimer,et al.  The tidal disruption of neutron stars by black holes in close binaries. , 1976 .

[18]  F. Thielemann,et al.  Galactic evolution of rapid neutron capture process abundances: the inhomogeneous approach , 2015, 1501.07749.

[19]  William H. Lee,et al.  COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND r-PROCESS SYNTHESIS IN THE EARLY UNIVERSE , 2014, 1410.3467.

[20]  K. Schmidt,et al.  NEW INSIGHT INTO THE FISSION PROCESS FROM EXPERIMENTS WITH RELATIVISTIC HEAVY-ION BEAMS , 2008 .

[21]  T. Beers,et al.  NEW HUBBLE SPACE TELESCOPE OBSERVATIONS OF HEAVY ELEMENTS IN FOUR METAL-POOR STARS , 2012, 1210.6387.

[22]  Garching,et al.  r-PROCESS NUCLEOSYNTHESIS IN DYNAMICALLY EJECTED MATTER OF NEUTRON STAR MERGERS , 2011, 1107.0899.

[23]  W. Aoki,et al.  The Stellar Abundances for Galactic Archaeology (SAGA) data base - II. Implications for mixing and nucleosynthesis in extremely metal-poor stars and chemical enrichment of the Galaxy , 2010, 1010.6272.

[24]  A. Helmi,et al.  The early days of the Sculptor dwarf spheroidal galaxy , 2015, 1506.08636.

[25]  Hans-Thomas Janka,et al.  Exploring properties of high-density matter through remnants of neutron-star mergers , 2015, 1508.05493.

[26]  S. Shectman,et al.  CHEMICAL SIGNATURES OF THE FIRST SUPERNOVAE IN THE SCULPTOR DWARF SPHEROIDAL GALAXY , 2014, 1412.5176.

[27]  Friedrich-Karl Thielemann,et al.  THE r-PROCESS NUCLEOSYNTHESIS IN THE VARIOUS JET-LIKE EXPLOSIONS OF MAGNETOROTATIONAL CORE-COLLAPSE SUPERNOVAE , 2015, 1501.06567.

[28]  T. Takiwaki,et al.  The Intermediate r-process in Core-collapse Supernovae Driven by the Magneto-rotational Instability , 2016, 1611.02280.

[29]  K. Kotake,et al.  Explosive Nucleosynthesis in Magnetohydrodynamical Jets from Collapsars. II — Heavy-Element Nucleosynthesis of s, p, r-Processes — , 2012, 1203.6488.

[30]  N. Prantzos,et al.  NEUTRON STAR MERGERS AS THE ORIGIN OF r-PROCESS ELEMENTS IN THE GALACTIC HALO BASED ON THE SUB-HALO CLUSTERING SCENARIO , 2015, 1504.04559.

[31]  T. Piran,et al.  Mass ejection in neutron star mergers , 1998 .

[32]  S. Goriely,et al.  Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient , 2013 .

[33]  F. Thielemann,et al.  Neutron-induced astrophysical reaction rates for translead nuclei , 2009, 0911.2181.

[34]  L. Roberts,et al.  INTEGRATED NUCLEOSYNTHESIS IN NEUTRINO-DRIVEN WINDS , 2010, 1004.4916.

[35]  F. Thielemann,et al.  The r-Process in the region of transuranium elements and the contribution of fission products to the nucleosynthesis of nuclei with A ≤ 130 , 2008 .

[36]  G. Lorusso,et al.  RELATIVE CONTRIBUTIONS OF THE WEAK, MAIN, AND FISSION-RECYCLING r-PROCESS , 2015, 1505.02257.

[37]  H. Janka,et al.  ELECTRON-CAPTURE SUPERNOVAE AS SOURCES OF 60Fe , 2013, 1307.3319.

[38]  Oleg Korobkin,et al.  Neutrino-driven winds from neutron star merger remnants , 2014, 1405.6730.

[39]  Tsvi Piran,et al.  Mass ejection from neutron star mergers: different components and expected radio signals , 2015, 1501.01986.

[40]  C. Ott,et al.  The influence of neutrinos on r-process nucleosynthesis in the ejecta of black hole-neutron star mergers , 2016, 1601.07942.

[41]  H. Sagawa,et al.  New finite-range droplet mass model and equation-of-state parameters. , 2012, Physical review letters.

[42]  H. Janka,et al.  New fission fragment distributions and r-process origin of the rare-earth elements. , 2013, Physical review letters.

[43]  T. Piran,et al.  Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis , 2015, Nature Physics.

[44]  F. Thielemann,et al.  Fission and the r-process: Competition between neutron-induced and beta-delayed fission , 2004 .

[45]  A. Perego,et al.  MAGNETOROTATIONALLY DRIVEN SUPERNOVAE AS THE ORIGIN OF EARLY GALAXY r-PROCESS ELEMENTS? , 2012, 1203.0616.

[46]  Stefano Covino,et al.  A possible macronova in the late afterglow of the long–short burst GRB 060614 , 2015, Nature Communications.

[47]  Tum,et al.  Impact of weak interactions of free nucleons on the r-process in dynamical ejecta from neutron-star mergers , 2015, 1504.04377.

[48]  F. Zwicky,et al.  Remarks on Super-Novae and Cosmic Rays , 1934 .

[49]  S. Rosswog,et al.  The long-term evolution of neutron star merger remnants { II. Radioactively powered transients , 2013, 1307.2943.

[50]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[51]  E. Ramirez-Ruiz,et al.  THE HISTORY OF R-PROCESS ENRICHMENT IN THE MILKY WAY , 2014, 1407.3796.

[52]  M. Ruffert,et al.  r-Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole-Neutron Star Mergers , 2008, 0803.1785.

[53]  W. Myers,et al.  Nuclear ground state masses and deformations , 1995 .

[54]  Lawrence E. Kidder,et al.  Post-merger evolution of a neutron star-black hole binary with neutrino transport , 2015, 1502.04146.

[55]  R. Reedy,et al.  Interstellar ^{60}Fe on the Surface of the Moon. , 2016, Physical review letters.

[56]  M. Ruffert,et al.  Coalescing neutron stars: A Step towards physical models. 1: Hydrodynamic evolution and gravitational wave emission , 1995, astro-ph/9509006.

[57]  L. Roberts,et al.  Medium modification of the charged-current neutrino opacity and its implications , 2012, 1205.4066.

[58]  I. Roederer THE ORIGIN OF THE HEAVIEST METALS IN MOST ULTRA-FAINT DWARF GALAXIES , 2016, 1611.05886.

[59]  The influence of quark matter at high densities on binary neutron star mergers , 2004, astro-ph/0401083.

[60]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[61]  Anna Frebel,et al.  COMPLETE ELEMENT ABUNDANCES OF NINE STARS IN THE r-PROCESS GALAXY RETICULUM II , 2016, 1607.07447.

[62]  Meng-Ru Wu,et al.  RADIOACTIVITY AND THERMALIZATION IN THE EJECTA OF COMPACT OBJECT MERGERS AND THEIR IMPACT ON KILONOVA LIGHT CURVES , 2016, 1605.07218.

[63]  Garching,et al.  Revealing the high-density equation of state through binary neutron star mergers , 2014, 1403.5301.

[64]  M. Shibata,et al.  Dynamical mass ejection from binary neutron star mergers: Radiation-hydrodynamics study in general relativity , 2015, 1502.06660.

[65]  E. Dorfi,et al.  60Fe anomaly in a deep-sea manganese crust and implications for a nearby supernova source. , 2004, Physical review letters.

[66]  Nucleosynthesis in Neutrino-Driven Winds. I. The Physical Conditions , 1996, astro-ph/9611094.

[67]  Zuker,et al.  Microscopic mass formulas. , 1995, Physical review. C, Nuclear physics.

[68]  T. Beers,et al.  Measurement of stellar age from uranium decay , 2001, Nature.

[69]  H. Janka,et al.  The r-PROCESS IN THE NEUTRINO-DRIVEN WIND FROM A BLACK-HOLE TORUS , 2011, 1106.6142.

[70]  D. Vanbeveren,et al.  Massive double compact object mergers: gravitational wave sources and r-process element production sites , 2013, 1307.0959.

[71]  T. Kajino,et al.  ENRICHMENT OF r-PROCESS ELEMENTS IN DWARF SPHEROIDAL GALAXIES IN CHEMO-DYNAMICAL EVOLUTION MODEL , 2015, 1509.08934.

[72]  A. Perego,et al.  Neutrino Flavor Evolution in Binary Neutron Star Merger Remnants , 2016, 1607.05938.

[73]  B. Metzger,et al.  Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger , 2014, 1402.4803.

[74]  Kohji Takahashi,et al.  R-process nucleosynthesis and nuclei far from the region of β-stability , 1975 .

[75]  F. Thielemann,et al.  Probabilities of delayed processes for nuclei involved in the r-process , 2013 .

[76]  K. Kratz,et al.  CHARGED-PARTICLE AND NEUTRON-CAPTURE PROCESSES IN THE HIGH-ENTROPY WIND OF CORE-COLLAPSE SUPERNOVAE , 2010, 1002.2346.

[77]  D Huet,et al.  GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. , 2016, Physical review letters.

[78]  J. Kneller,et al.  Neutrino oscillations above black hole accretion disks: disks with electron-flavor emission , 2012, 1207.6648.

[79]  F. Kitaura,et al.  Dynamics of shock propagation and nucleosynthesis conditions in O-Ne-Mg core supernovae , 2007, 0712.4237.

[80]  Brian D. Metzger,et al.  Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era , 2015, 1512.05435.

[81]  Tum,et al.  NEUTRON-STAR MERGER EJECTA AS OBSTACLES TO NEUTRINO-POWERED JETS OF GAMMA-RAY BURSTS , 2015, 1510.04288.

[82]  Masaru Shibata,et al.  PRODUCTION OF ALL THE r-PROCESS NUCLIDES IN THE DYNAMICAL EJECTA OF NEUTRON STAR MERGERS , 2014, 1402.7317.

[83]  Lawrence E. Kidder,et al.  Neutron star-black hole mergers with a nuclear equation of state and neutrino cooling: Dependence in the binary parameters , 2014, 1405.1121.

[84]  R. Surman,et al.  Symmetric and standard matter neutrino resonances above merging compact objects , 2015, 1507.00946.

[85]  C. Chiappini,et al.  The role of neutron star mergers in the chemical evolution of the Galactic halo , 2015, 1503.02954.

[86]  P. Hopkins,et al.  Galactic r-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy , 2014, 1407.7039.

[87]  C. Palenzuela,et al.  Unequal mass binary neutron star mergers and multimessenger signals , 2016, 1603.00501.

[88]  B. Metzger,et al.  Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers , 2016, 1607.05290.

[89]  K. Nomoto,et al.  The triple alpha reaction at low temperatures in accreting white dwarfs and neutron stars. , 1985 .

[90]  Friedrich-Karl Thielemann,et al.  Beta-decay half-lives for the r-process nuclei , 2016 .

[91]  Min Liu,et al.  An improved nuclear mass formula: WS3 , 2012, 1211.2538.

[92]  P. Cerd'a-Dur'an,et al.  Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers , 2015, 1509.09205.

[93]  K. Ioka,et al.  Anisotropic mass ejection from black hole-neutron star binaries: Diversity of electromagnetic counterparts , 2013, 1305.6309.

[94]  S. Rosswog,et al.  Mergers of Neutron Star-Black Hole Binaries with Small Mass Ratios: Nucleosynthesis, Gamma-Ray Bursts, and Electromagnetic Transients , 2005, astro-ph/0508138.

[95]  D. Vanbeveren,et al.  The delay time distribution of massive double compact star mergers , 2016, 1601.06966.

[96]  K. Hotokezaka,et al.  Exploring tidal effects of coalescing binary neutron stars in numerical relativity , 2013, 1301.3555.

[97]  M. Oertel,et al.  Equations of state for supernovae and compact stars , 2016, 1610.03361.

[98]  M. B. Davies,et al.  Merging neutron stars: asymmetric systems , 2000 .

[99]  Dimitrios Psaltis,et al.  ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS , 2012, 1201.1006.

[100]  Brian D. Metzger,et al.  Outflows from accretion discs formed in neutron star mergers: effect of black hole spin , 2014, 1409.4426.

[101]  A. Marek,et al.  Relativistic neutron star merger simulations with non-zero temperature equations of state. I. Variation of binary parameters and equation of state , 2006, astro-ph/0611047.

[102]  S. Woosley,et al.  The alpha -Process and the r-Process , 1992 .

[103]  D. Kasen,et al.  OPACITIES AND SPECTRA OF THE r-PROCESS EJECTA FROM NEUTRON STAR MERGERS , 2013, 1303.5788.

[104]  S. Ryan,et al.  Neutron-Capture Elements in the Very Metal Poor Star HD 122563 , 2006, astro-ph/0602107.

[105]  Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae , 2005, astro-ph/0512065.

[106]  J. Sollerman,et al.  Detectability of compact binary merger macronovae , 2016, 1611.09822.

[107]  J. Simon,et al.  R-process enrichment from a single event in an ancient dwarf galaxy , 2015, Nature.

[108]  Li-Xin Li,et al.  Transient Events from Neutron Star Mergers , 1998 .

[109]  A. Aprahamian,et al.  The impact of individual nuclear properties on $r$-process nucleosynthesis , 2015, 1508.07352.

[110]  D. Wanderman,et al.  The rate, luminosity function and time delay of non-Collapsar short GRBs , 2014, 1405.5878.

[111]  A. Perego,et al.  Matter Neutrino Resonance Transitions above a Neutron Star Merger Remnant , 2016, 1607.04671.

[112]  C. Ott,et al.  NEUTRINO SIGNATURES AND THE NEUTRINO-DRIVEN WIND IN BINARY NEUTRON STAR MERGERS , 2008, 0806.4380.

[113]  W. Kutschera,et al.  Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis , 2015, Nature Communications.

[114]  Francis Timmes,et al.  Integration of Nuclear Reaction Networks for Stellar Hydrodynamics , 1999 .

[115]  Tum,et al.  Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers , 2014, 1406.2687.

[116]  T. Beers,et al.  NEW DETECTIONS OF ARSENIC, SELENIUM, AND OTHER HEAVY ELEMENTS IN TWO METAL-POOR STARS , 2014, 1406.4554.

[117]  F. Thielemann Nuclear astrophysics: Deep-sea diving for stellar debris , 2015 .

[118]  A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst , 2015, Nature.

[119]  Garching,et al.  SYSTEMATICS OF DYNAMICAL MASS EJECTION, NUCLEOSYNTHESIS, AND RADIOACTIVELY POWERED ELECTROMAGNETIC SIGNALS FROM NEUTRON-STAR MERGERS , 2013, 1302.6530.

[120]  K. Sorai,et al.  Stellar Abundances for the Galactic Archeology (SAGA) Database — Compilation of the Characteristics of Known Extremely Metal-Poor Stars , 2008, 0806.3697.

[121]  S. Rosswog,et al.  THE ROLE OF FISSION IN NEUTRON STAR MERGERS AND ITS IMPACT ON THE r-PROCESS PEAKS , 2014, AIP Conference Proceedings.

[122]  G. Martínez-Pinedo,et al.  Large-scale evaluation of β -decay rates of r -process nuclei with the inclusion of first-forbidden transitions , 2015, 1507.07442.

[123]  K. Kratz,et al.  New calculations of grossβ-decay properties for astrophysical applications: Speeding-up the classicalrprocess , 2003 .

[124]  T. Piran,et al.  r-PROCESS PRODUCTION SITES AS INFERRED FROM Eu ABUNDANCES IN DWARF GALAXIES , 2016, 1608.08650.

[125]  M. Shibata,et al.  Dynamical mass ejection from the merger of asymmetric binary neutron stars: Radiation-hydrodynamics study in general relativity , 2016, 1603.01918.

[126]  C. Ott,et al.  MAGNETOROTATIONAL CORE-COLLAPSE SUPERNOVAE IN THREE DIMENSIONS , 2014, 1403.1230.

[127]  L. K. Fifield,et al.  Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe , 2016, Nature.

[128]  Luciano Rezzolla,et al.  Dynamical Mass Ejection from Binary Neutron Star Mergers , 2016, 1601.02426.

[129]  S. Rosswog,et al.  The long-term evolution of neutron star merger remnants – I. The impact of r-process nucleosynthesis , 2013, 1307.2939.

[130]  T. Piran,et al.  Merging neutron stars. 1. Initial results for coalescence of noncorotating systems , 1994, astro-ph/9401032.

[131]  Conformally flat Smoothed Particle Hydrodynamics Application to Neutron Star Mergers , 2001, gr-qc/0111005.

[132]  Erik Schnetter,et al.  A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae , 2015, Nature.

[133]  G. Wasserburg,et al.  Where, oh where has the r-process gone? , 2007, 0708.1767.

[134]  Judith G. Cohen,et al.  THE CHEMICAL EVOLUTION OF THE DRACO DWARF SPHEROIDAL GALAXY , 2009, 0906.1006.

[135]  M. Hashimoto,et al.  Nucleosynthesis in Magnetically Driven Jets from Collapsars , 2008, 0804.0969.

[136]  T. Fischer,et al.  Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling. , 2012, Physical review letters.

[137]  A. Davis,et al.  1.11 – Short-Lived Radionuclides and Early Solar System Chronology , 2014 .

[138]  H. Janka,et al.  Production of Nickel-56 in black hole-neutron star merger accretion disk outflows , 2013, 1312.1199.

[139]  F. Kitaura,et al.  NUCLEOSYNTHESIS IN ELECTRON CAPTURE SUPERNOVAE OF ASYMPTOTIC GIANT BRANCH STARS , 2008, 0810.3999.

[140]  K. Kratz,et al.  The Astrophysical r-Process: A Comparison of Calculations following Adiabatic Expansion with Classical Calculations Based on Neutron Densities and Temperatures , 1999 .

[141]  W. R. Hix,et al.  Computational methods for nucleosynthesis and nuclear energy generation , 1999 .