Computing nearly singular solutions using pseudo-spectral methods
暂无分享,去创建一个
[1] J. Marsden,et al. A mathematical introduction to fluid mechanics , 1979 .
[2] F. Hussain,et al. Simulation of vortex reconnection , 1989 .
[3] T. Hou,et al. Geometric Properties and Nonblowup of 3D Incompressible Euler Flow , 2004, math-ph/0402032.
[4] C. Fefferman,et al. Geometric constraints on potentially singular solutions for the 3-D Euler equations , 1996 .
[5] Kai Germaschewski,et al. ADAPTIVE MESH REFINEMENT FOR SINGULAR SOLUTIONS OF THE INCOMPRESSIBLE EULER EQUATIONS , 1998 .
[6] Eitan Tadmor,et al. Spectral Methods for Discontinuous Problems , 1985 .
[7] K. W. Morton,et al. Numerical methods for fluid dynamics , 1987 .
[8] Andrew J. Majda,et al. The Fourier method for nonsmooth initial data , 1978 .
[9] Richard B. Pelz,et al. DIRECT NUMERICAL SIMULATION OF TRANSITION TO TURBULENCE FROM A HIGH-SYMMETRY INITIAL CONDITION , 1994 .
[10] Norman J. Zabusky,et al. Vortex intensification and collapse of the Lissajous-elliptic ring: single- and multi-filament Biot-Savart simulations and visiometrics , 1995, Journal of Fluid Mechanics.
[11] Robert McDougall Kerr. Evidence for a Singularity of the Three Dimensional, Incompressible Euler Equations , 1993 .
[12] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[13] Ruo Li,et al. Dynamic Depletion of Vortex Stretching and Non-Blowup of the 3-D Incompressible Euler Equations , 2006, J. Nonlinear Sci..
[14] E. Tadmor,et al. On the stability of the unsmoothed Fourier method for hyperbolic equations , 1994 .
[15] T. Hou,et al. Improved Geometric Conditions for Non-Blowup of the 3D Incompressible Euler Equation , 2006 .
[16] Steven A. Orszag,et al. Dynamical aspects of vortex reconnection of perturbed anti-parallel vortex tubes , 1993 .
[17] Peter D. Lax,et al. The computation of discontinuous solutions of linear hyperbolic equations , 1978 .
[18] The evolution of a turbulent vortex , 1982 .
[19] E. Tadmor,et al. Analysis of the spectral vanishing viscosity method for periodic conservation laws , 1989 .
[20] Russel E. Caflisch,et al. Singularity formation for complex solutions of the 3D incompressible Euler equations , 1993 .
[21] E. Tadmor,et al. Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .
[22] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[23] Grauer,et al. Numerical computation of 3D incompressible ideal fluids with swirl. , 1991, Physical review letters.
[24] E. Siggia,et al. Collapsing solutions to the 3‐D Euler equations , 1990 .
[25] Robert McDougall Kerr. Velocity and scaling of collapsing Euler vortices , 2005 .
[26] Richard B. Pelz,et al. Locally self-similar finite time collapse in a high-symmetry vortex filament model , 1997 .
[27] Eitan Tadmor,et al. Super Viscosity And Spectral Approximations Of Nonlinear Conservation Laws , 1993 .
[28] A. Majda,et al. Vorticity and incompressible flow , 2001 .