An approach to solving systems of polynomials via modular arithmetics with applications

The objective of this paper is twofold. First, we describe a method to solve large systems of polynomial equations using modular arithmetics. Then, we apply the approach to the study of the problem of linearizability for a quadratic system of ordinary differential equations.

[1]  Franz Winkler,et al.  A p-Adic Approach to the Computation of Gröbner Bases , 1988, J. Symb. Comput..

[2]  Valery G. Romanovski,et al.  Isochronicity of analytic systems via Urabe's criterion , 2007 .

[3]  Elizabeth A. Arnold,et al.  Modular algorithms for computing Gröbner bases , 2003, J. Symb. Comput..

[4]  Jaume Giné,et al.  Linearizability conditions for Lotka–Volterra planar complex cubic systems , 2009 .

[5]  Valery G. Romanovski,et al.  Linearizability of linear systems perturbed by fifth degree homogeneous polynomials , 2007 .

[6]  W. Szlenk,et al.  Solution of the 1 : − 2 resonant center problem in the quadratic case , 2007 .

[7]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[8]  James H. Davenport,et al.  P-adic reconstruction of rational numbers , 1982, SIGS.

[9]  Victor F. Edneral,et al.  Computer evaluation of cyclicity in planar cubic system , 1997, ISSAC.

[10]  Christiane Rousseau,et al.  DARBOUX LINEARIZATION AND ISOCHRONOUS CENTERS WITH A RATIONAL FIRST INTEGRAL , 1997 .

[11]  Weinian Zhang,et al.  Decomposition of algebraic sets and applications to weak centers of cubic systems , 2009, J. Comput. Appl. Math..

[12]  Gary L. Ebert,et al.  Some comments on the modular approach to Gröbner-bases , 1983, SIGS.

[13]  Valery G. Romanovski,et al.  1: -3 resonant centers on C2 with homogeneous cubic nonlinearities , 2008, Comput. Math. Appl..

[14]  Alexandra Fronville,et al.  Solution of the 1 : −2 resonant center problem in the quadratic case , 1998 .

[15]  Bruno Buchberger,et al.  Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..

[16]  G. Pauer,et al.  On Lucky Ideals for Gröbner Basis Computations , 1992, J. Symb. Comput..

[17]  Valery G. Romanovski,et al.  The Center and Cyclicity Problems: A Computational Algebra Approach , 2009 .

[18]  C. Rousseau,et al.  Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in $\mathbb{C}^2$ , 2001 .

[19]  T. Takeshima,et al.  A modular method for Gro¨bner-basis construction over Q and solving system of algebraic equations , 1990 .

[20]  I. Borosh,et al.  Exact solutions of linear equations with rational coefficients by congruence techniques , 1966 .

[21]  Dongming Wang,et al.  Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.

[22]  Valery G. Romanovski,et al.  Linearizability conditions of time-reversible quartic systems having homogeneous nonlinearities , 2008 .

[23]  Christiane Rousseau,et al.  Normalizable, Integrable, and Linearizable Saddle Points for Complex Quadratic Systems in $$\mathbb{C}^2 $$ , 2003 .

[24]  Zhaoxia Wang,et al.  Local bifurcations of critical periods in a generalized 2D LV system , 2009, Appl. Math. Comput..

[25]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[26]  Kazuhiro Yokoyama,et al.  Localization and Primary Decomposition of Polynomial Ideals , 1996, J. Symb. Comput..

[27]  Hans-Gert Gräbe,et al.  On Lucky Primes , 1993, J. Symb. Comput..

[28]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..