Paraconsistent OWL and related logics

The Web Ontology Language OWL is currently the most prominent formalism for representing ontologies in Semantic Web applications. OWL is based on description logics, and automated reasoners are used to infer knowledge implicitly present in OWL ontologies. However, because typical description logics obey the classical principle of explosion, reasoning over inconsistent ontologies is impossible in OWL. This is so despite the fact that inconsistencies are bound to occur in many realistic cases, e.g., when multiple ontologies are merged or when ontologies are created by machine learning or data mining tools.In this paper, we present four-valued paraconsistent description logics which can reason over inconsistencies. We focus on logics corresponding to OWL DL and its profiles. We present the logic $\mathcal {SROIQ}4$, showing that it is both sound relative to classical $\mathcal {SROIQ}$ and that its embedding into $\mathcal {SROIQ}$ is consequence preserving. We also examine paraconsistent varieties of $\mathcal{EL}^{++}$, DL-Lite, and Horn-DLs. The general framework described here has the distinct advantage of allowing classical reasoners to draw sound but nontrivial conclusions from even inconsistent knowledge bases. Truth-value gaps and gluts can also be selectively eliminated from models by inserting additional axioms into knowledge bases. If gaps but not gluts are eliminated, additional classical conclusions can be drawn without affecting paraconsistency.

[1]  Ofer Arieli,et al.  Reducing Preferential Paraconsistent Reasoning to Classical Entailment , 2003, Journal of Logic and Computation.

[2]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[3]  Ofer Arieli,et al.  On the Application of the Disjunctive Syllogism in Paraconsistent Logics Based on Four States of Information , 2010, KR.

[4]  Peter F. Patel-Schneider,et al.  A Four-Valued Semantics for Terminological Logics , 1989, Artif. Intell..

[5]  Newton C. A. da Costa,et al.  Professor Newton CA da Costa awarded Nicholas Copernicus University medal of merit , 1999 .

[6]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[7]  Ofer Arieli,et al.  Paraconsistent reasoning and preferential entailments by signed quantified Boolean formulae , 2007, TOCL.

[8]  S. Jaskowski Propositional calculus for contradictory deductive systems , 1969 .

[9]  Umberto Straccia Document Retrieval by Relevance Terminological Logics , 1995, MIRO.

[10]  PETER F. PATEL-SCHNEIDER,et al.  A hybrid, decidable, logic‐based knowledge representation system 1 , 1987, Comput. Intell..

[11]  Sebastian Rudolph,et al.  Complexity Boundaries for Horn Description Logics , 2007, AAAI.

[12]  Arnon Avron,et al.  Reasoning with logical bilattices , 1996, J. Log. Lang. Inf..

[13]  Sebastian Rudolph,et al.  Cheap Boolean Role Constructors for Description Logics , 2008, JELIA.

[14]  Pascal Hitzler,et al.  Paraconsistent Resolution for Four-valued Description Logics , 2007, Description Logics.

[15]  Sean Bechhofer,et al.  The OWL API: A Java API for OWL ontologies , 2011, Semantic Web.

[16]  Pascal Hitzler,et al.  Paraconsistent Reasoning for OWL 2 , 2009, RR.

[17]  BechhoferSean,et al.  The OWL API: A Java API for OWL ontologies , 2011 .

[18]  Sandra de Amo,et al.  A paraconsistent logic programming approach for querying inconsistent databases , 2007, Int. J. Approx. Reason..

[19]  Yarden Katz,et al.  Pellet: A practical OWL-DL reasoner , 2007, J. Web Semant..

[20]  Andrea Calì,et al.  On the decidability and complexity of query answering over inconsistent and incomplete databases , 2003, PODS.

[21]  Gopalan Nadathur,et al.  Handbook of Logic in Artificial Intelligence and Logic Programming, Volume2, Deduction Methodologies , 1994, Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 2.

[22]  Frank van Harmelen,et al.  A reasonable Semantic Web , 2010, Semantic Web.

[23]  Umberto Straccia,et al.  A relevance terminological logic for information retrieval , 1996, SIGIR '96.

[24]  Christian Lang,et al.  FOUR-VALUED LOGICS FOR PARACONSISTENT REASONING , 2006 .

[25]  Alan L. Rector,et al.  Debugging OWL-DL Ontologies: A Heuristic Approach , 2005, SEMWEB.

[26]  Luís Moniz Pereira,et al.  A Paraconsistent Semantics with Contradiction Support Detection , 1997, LPNMR.

[27]  Mounia Lalmas,et al.  Information Retrieval: Uncertainty and Logics: Advanced Models for the Representation and Retrieval of Information , 1998 .

[28]  Peter Gärdenfors,et al.  Revisions of Knowledge Systems Using Epistemic Entrenchment , 1988, TARK.

[29]  Umberto Straccia,et al.  Mirlog: A Logic for Multimedia Information Retrieval , 1998 .

[30]  Wei Li,et al.  On logic of paradox , 1995, Proceedings 25th International Symposium on Multiple-Valued Logic.

[31]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[32]  Pascal Hitzler,et al.  Paraconsistent Reasoning for Expressive and Tractable Description Logics , 2008, Description Logics.

[33]  Umberto Straccia,et al.  A Sequent Calculus for Reasoning in Four-Valued Description Logics , 1997, TABLEAUX.

[34]  Pascal Hitzler,et al.  Paraconsistent Reasoning with OWL - Algorithms and the ParOWL Reasoner ? , 2006 .

[35]  Guilin Qi,et al.  Quasi-Classical Semantics for Expressive Description Logics , 2009, Description Logics.

[36]  Dov M. Gabbay,et al.  Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning , 1994 .

[37]  Sebastian Rudolph,et al.  ELP: Tractable Rules for OWL 2 , 2008, SEMWEB.

[38]  Jeff Heflin,et al.  LUBM: A benchmark for OWL knowledge base systems , 2005, J. Web Semant..

[39]  Bijan Parsia,et al.  Finding All Justifications of OWL DL Entailments , 2007, ISWC/ASWC.

[40]  C. Damásio,et al.  A survey of paraconsistent semantics for logic programs , 1998 .

[41]  Jon Doyle,et al.  A Truth Maintenance System , 1979, Artif. Intell..

[42]  Ian Horrocks,et al.  Description logic programs: combining logic programs with description logic , 2003, WWW '03.

[43]  Anthony Hunter,et al.  Reasoning with contradictory information using quasi-classical logic , 2000, J. Log. Comput..

[44]  W. Carnielli,et al.  A Taxonomy of C-systems , 2001 .

[45]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[46]  Frank van Harmelen,et al.  Reasoning with Inconsistent Ontologies , 2005, IJCAI.

[47]  W. Carnielli,et al.  Logics of Formal Inconsistency , 2007 .

[48]  Arnon Avron,et al.  The Value of the Four Values , 1998, Artif. Intell..

[49]  Franz Baader,et al.  Pushing the EL Envelope , 2005, IJCAI.

[50]  Nuel D. Belnap,et al.  How a Computer Should Think , 2019, New Essays on Belnap-­Dunn Logic.

[51]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[52]  Newton C. A. da Costa,et al.  On the theory of inconsistent formal systems , 1974, Notre Dame J. Formal Log..

[53]  Thomas Lukasiewicz,et al.  Proceedings of the Fourth international conference on Web reasoning and rule systems , 2010 .

[54]  Donald Nute,et al.  Defeasible Logic , 1994, INAP.

[55]  Jan Chomicki,et al.  Consistent query answers in inconsistent databases , 1999, PODS '99.

[56]  Qing Han,et al.  Paraconsistent default reasoning , 2004, NMR.

[57]  Frederick Maier,et al.  Extending paraconsistent SROIQ , 2010, RR 2010.

[58]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[59]  Stefan Schlobach,et al.  Non-Standard Reasoning Services for the Debugging of Description Logic Terminologies , 2003, IJCAI.

[60]  Newton C. A. da Costa,et al.  Paraconsistent Logics and Paraconsistency: Technical and Philosophical Developments , 2004 .

[61]  Yue Ma,et al.  Inferring with Inconsistent OWL DL Ontology: A Multi-valued Logic Approach , 2006, EDBT Workshops.

[62]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[63]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[64]  Michael Gelfond,et al.  Classical negation in logic programs and disjunctive databases , 1991, New Generation Computing.

[65]  Pascal Hitzler,et al.  Algorithms for Paraconsistent Reasoning with OWL , 2007, ESWC.

[66]  Johan van den Akker,et al.  QML: a paraconsistent default logic , 1993 .

[67]  Karl R. Popper,et al.  What is Dialectic , 1940 .

[68]  Chiaki Sakama,et al.  Paraconsistent Stable Semantics for Extended Disjunctive Programs , 1995, J. Log. Comput..

[69]  Bernardo Cuenca Grau,et al.  OWL 2 Web Ontology Language: Profiles , 2009 .

[70]  Norihiro Kamide Paraconsistent Description Logics Revisited , 2010, Description Logics.

[71]  Chiaki Sakama,et al.  Extended Well-Founded Semantics for Paraconsistent Logic Programs , 1992, FGCS.

[72]  Karl R. Popper,et al.  II.—WHAT IS DIALECTIC ? , 1940 .

[73]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[74]  Torsten Schaub,et al.  Inconsistency Tolerance , 2005, Lecture Notes in Computer Science.

[75]  Itala M. Loffredo D'Ottaviano,et al.  Paraconsistency: The Logical Way to the Inconsistent , 2002 .

[76]  Sebastian Rudolph,et al.  Foundations of Semantic Web Technologies , 2009 .

[77]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[78]  Boris Motik,et al.  Reasoning in description logics using resolution and deductive databases , 2006 .

[79]  Zuoquan Lin,et al.  A Coherent and Paraconsistent Variant of the Default Logic , 2007, AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning.

[80]  James A. Hendler,et al.  Debugging unsatisfiable classes in OWL ontologies , 2005, J. Web Semant..

[81]  Peter F. Patel-Schneider,et al.  OWL 2 Web Ontology Language Primer (Second Edition) , 2012 .

[82]  Peter F. Patel-Schneider,et al.  Reducing OWL entailment to description logic satisfiability , 2004, Journal of Web Semantics.

[83]  Guilin Qi,et al.  Measuring Inconsistency for Description Logics Based on Paraconsistent Semantics , 2007, Description Logics.