Parallelisation to Several Tens-of-Thousands of Cores
暂无分享,去创建一个
F. Chalot | Brian C. Vermeire | F. Bassi | F. D. Witherden | J. Jägersküpper | B. C. Vermeire | J. S. Park | L. Botti | L. Verzeroli | R. Hartmann | E. Martin | M. Lorteau | P. E. Vincent | A. Iyer | K. Puri | D. Gutzwiller | C. Hirsch | P. Vincent | F. Bassi | J. Jägersküpper | F. Witherden | L. Botti | F. Chalot | K. Puri | D. Gutzwiller | A. Iyer | C. Hirsch | Francesco Bassi | L. Verzeroli | Ralf Hartmann | E. Martin | M. Lorteau | Jin Seok Park
[1] Eric Petit,et al. Divide and Conquer Parallelization of Finite Element Method Assembly , 2013, PARCO.
[2] Freddie D. Witherden,et al. Heterogeneous Computing on Mixed Unstructured Grids with PyFR , 2014, ArXiv.
[3] Jens Jägersküpper,et al. DLR-Project Digital-X: Next generation CFD solver 'Flucs' , 2016 .
[4] Thomas D. Economon,et al. Stanford University Unstructured (SU 2 ): An open-source integrated computational environment for multi-physics simulation and design , 2013 .
[5] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[6] Paul G. Tucker,et al. Computation of unsteady turbomachinery flows: Part 1Progress and challenges , 2011 .
[7] Rajeev Thakur,et al. Enabling communication concurrency through flexible MPI endpoints , 2014, Int. J. High Perform. Comput. Appl..
[8] Howard P. Hodson,et al. Development of Blade Profiles for Low-Pressure Turbine Applications , 1997 .
[9] Frederic Chalot,et al. Higher-Order RANS and DES in an Industrial Stabilized Finite Element Code , 2015 .
[10] Leonhard Fottner,et al. Experimental and Numerical Investigation of Wake-Induced Transition on a Highly Loaded LP Turbine at Low Reynolds Numbers , 2000 .
[11] P. Tesini,et al. On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..
[12] Víctor López,et al. MPI+X: task-based parallelisation and dynamic load balance of finite element assembly , 2018, International Journal of Computational Fluid Dynamics.
[13] Freddie D. Witherden,et al. PyFR: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach , 2013, Comput. Phys. Commun..
[14] V. N. Rao,et al. Numerical Investigation of Contrasting Flow Physics in Different Zones of a High-Lift Low Pressure Turbine Blade , 2015 .
[15] John H. Kolias,et al. A CONSERVATIVE STAGGERED-GRID CHEBYSHEV MULTIDOMAIN METHOD FOR COMPRESSIBLE FLOWS , 1995 .
[16] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[17] M. de la Llave Plata,et al. Aghora: A High-Order DG Solver for Turbulent Flow Simulations , 2015 .
[18] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[19] Norbert Kroll,et al. ADIGMA: A European Project on the Development of Adaptive Higher Order Variational Methods for Aerospace Applications , 2010 .
[20] Leonhard Fottner,et al. A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade , 2001 .
[21] Lorenzo Botti,et al. Influence of Reference-to-Physical Frame Mappings on Approximation Properties of Discontinuous Piecewise Polynomial Spaces , 2012, J. Sci. Comput..
[22] T. Hughes,et al. A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .
[23] Vincent Couaillier,et al. Turbulent jet simulation using high-order DG methods for aeroacoustics analysis , 2017, 1705.08723.
[24] Freddie D. Witherden,et al. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools , 2017, J. Comput. Phys..
[25] Q. V. Dinh,et al. A Multi-platform Shared- or Distributed-Memory Navier-Stokes Code , 1997, Parallel CFD.
[26] Antony Jameson,et al. A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..
[27] H. T. Huynh,et al. A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .
[28] Rémi Abgrall,et al. On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .
[29] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[30] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[31] Zdeněk Johan,et al. Data parallel finite element techniques for large-scale computational fluid dynamics , 1992 .
[32] P. Frederickson,et al. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .
[33] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[34] R. Lewis,et al. Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .
[35] T. Hughes,et al. A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis , 1989 .
[36] Marcel Vinokur,et al. Spectral difference method for unstructured grids I: Basic formulation , 2006, J. Comput. Phys..
[37] Hans-Peter Kersken,et al. HICFD: Highly Efficient Implementation of CFD Codes for HPC Many-Core Architectures , 2010, CHPC.
[38] S. Osher,et al. Weighted essentially non-oscillatory schemes , 1994 .
[39] Jens Jägersküpper,et al. GASPI - A Partitioned Global Address Space Programming Interface , 2012, Facing the Multicore-Challenge.
[40] Jochen Gier,et al. Designing Low Pressure Turbines for Optimized Airfoil Lift , 2010 .
[41] Nan Wu,et al. On the GPU performance of cell-centered finite volume method over unstructured tetrahedral meshes , 2013, IA3 '13.
[42] William Gropp,et al. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences , 2014 .
[43] Z. Wang. High-order methods for the Euler and Navier–Stokes equations on unstructured grids , 2007 .