Conformationally constrained aromatic oligoamide foldamers with supersecondary structure motifs.

The design, synthesis, and structural studies of aromatic foldamers based on oligo(phenanthroline dicarboxamide)s that displayed supersecondary structure motifs have been described. Governed by a combined conformational restriction, the foldamers adopted well defined and compact 3D structures, which have been validated by UV/Vis, NMR spectra, and X-ray crystal analysis. The results presented here would offer a useful route for the de novo design of aromatic oligoamide foldamers with distinctive structural architectures.

[1]  Hai‐Yu Hu,et al.  Folding-induced selective hydrogenation of helical 9,10-anthraquinone analogues. , 2008, Organic Letters.

[2]  B. Gong,et al.  Hollow crescents, helices, and macrocycles from enforced folding and folding-assisted macrocyclization. , 2008, Accounts of chemical research.

[3]  Zhan-Ting Li,et al.  Peptide mimics by linear arylamides: a structural and functional diversity test. , 2008, Accounts of chemical research.

[4]  Hai‐Yu Hu,et al.  Chiral induction in phenanthroline-derived oligoamide foldamers: an acid- and base-controllable switch in helical molecular strands. , 2008, Organic letters.

[5]  S. Ravindranathan,et al.  Sheet-forming abiotic hetero foldamers. , 2008, Chemical communications.

[6]  Dan Yang,et al.  Synthesis and Conformational Studies of γ−Aminoxy Peptides , 2008 .

[7]  Tomohiro Sato,et al.  Intramolecular crosslinking of an optically inactive 3(10)-helical peptide: stabilization of structure and helix sense. , 2008, Journal of the American Chemical Society.

[8]  Hai‐Yu Hu,et al.  A helix-turn-helix supersecondary structure based on oligo(phenanthroline dicarboxamide)s. , 2008, Organic letters.

[9]  S. Ravindranathan,et al.  Conformationally constrained aliphatic-aromatic amino-acid-conjugated hybrid foldamers with periodic beta-turn motifs. , 2007, The Journal of organic chemistry.

[10]  J. Lehn,et al.  Chirality induction and protonation-induced molecular motions in helical molecular strands. , 2007, Chemistry.

[11]  P. R. Rajamohanan,et al.  BINOL-based foldamers--access to oligomers with diverse structural architectures. , 2007, The Journal of organic chemistry.

[12]  P. Balaram,et al.  Hybrid peptide design. Hydrogen bonded conformations in peptides containing the stereochemically constrained gamma-amino acid residue, gabapentin. , 2007, Journal of the American Chemical Society.

[13]  J. Leger,et al.  Proteomorphous objects from abiotic backbones. , 2007, Angewandte Chemie.

[14]  S. Ravindranathan,et al.  Enforcing periodic secondary structures in hybrid peptides: a novel hybrid foldamer containing periodic gamma-turn motifs. , 2007, The Journal of organic chemistry.

[15]  S. Mammi,et al.  Synthesis and structural characterisation as 12-helix of the hexamer of a beta-amino acid tethered to a pyrrolidin-2-one ring. , 2006, Chemical communications.

[16]  G. Sanjayan,et al.  Isotactic N-alkyl acrylamide oligomers assume self-assembled sheet structure: first unequivocal evidence from crystal structures. , 2006, Chemical communications.

[17]  E. Yashima,et al.  Oligoresorcinols fold into double helices in water. , 2006, Journal of the American Chemical Society.

[18]  Hai‐Yu Hu,et al.  Phenanthroline dicarboxamide-based helical foldamers: stable helical structures in methanol. , 2006, The Journal of organic chemistry.

[19]  A. Glättli,et al.  Helices and other secondary structures of β‐ and γ‐peptides , 2006 .

[20]  P. Gall,et al.  Crystal structures of aza-beta3-peptides, a new class of foldamers relying on a framework of hydrazinoturns. , 2005, The Journal of organic chemistry.

[21]  G. Grant,et al.  Helix-forming carbohydrate amino acids. , 2005, The Journal of organic chemistry.

[22]  D. Rognan,et al.  N,N'-linked oligoureas as foldamers: chain length requirements for helix formation in protic solvent investigated by circular dichroism, NMR spectroscopy, and molecular dynamics. , 2005, Journal of the American Chemical Society.

[23]  E. W. Meijer,et al.  Facile synthesis of a chiral polymeric helix; folding by intramolecular hydrogen bonding. , 2004, Chemical communications.

[24]  Dan Yang,et al.  γ4-Aminoxy peptides as new peptidomimetic foldamers , 2004 .

[25]  J. Leger,et al.  Design of an inversion center between two helical segments. , 2004, Journal of the American Chemical Society.

[26]  Ivan Huc,et al.  Aromatic Oligoamide Foldamers , 2004 .

[27]  J. Cano,et al.  A Hydrogen-Bonded Supramolecular meso-Helix , 2003 .

[28]  Matthew J. Mio,et al.  A field guide to foldamers. , 2001, Chemical reviews.

[29]  S. Gellman,et al.  Parallel sheet secondary structure in gamma-peptides. , 2001, Journal of the American Chemical Society.

[30]  B. Li,et al.  Synthesis and characterization of chiral N-O turns induced by alpha-aminoxy acids. , 2001, The Journal of organic chemistry.

[31]  W. DeGrado,et al.  beta-Peptides: from structure to function. , 2001, Chemical reviews.

[32]  F. Hampel,et al.  A meso-Helical Coordination Polymer from Achiral Dinuclear [Cu2(H3CCN)2(μ-pydz)3][PF6]2 and 1,3-Bis(diphenylphosphanyl)propane—Synthesis and Crystal Structure of {[Cu(μ-pydz)2][PF6]} (pydz=pyridazine) , 2001 .

[33]  S. Gellman,et al.  Synthesis and Structural Characterization of Helix-Forming β-Peptides: trans-2-Aminocyclopentanecarboxylic Acid Oligomers , 1999 .

[34]  B. Jaun,et al.  Pleated Sheets and Turns of β-Peptides with Proteinogenic Side Chains. , 1999, Angewandte Chemie.

[35]  B. Gong,et al.  A NEW APPROACH FOR THE DESIGN OF SUPRAMOLECULAR RECOGNITION UNITS : HYDROGEN-BONDED MOLECULAR DUPLEXES , 1999 .

[36]  James S. Nowick,et al.  Chemical Models of Protein β-Sheets , 1999 .

[37]  Douglas R. Powell,et al.  A β-Peptide Reverse Turn that Promotes Hairpin Formation , 1998 .

[38]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[39]  Douglas R. Powell,et al.  Antiparallel Sheet Formation in β-Peptide Foldamers: Effects of β-Amino Acid Substitution on Conformational Preference1 , 1997 .

[40]  J S Moore,et al.  Solvophobically driven folding of nonbiological oligomers. , 1997, Science.

[41]  Ulrich Hommel,et al.  β‐Peptides: Synthesis by Arndt‐Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X‐ray crystallography. Helical secondary structure of a β‐hexapeptide in solution and its stability towards pepsin , 1996 .

[42]  M G Rossmann,et al.  Comparison of super-secondary structures in proteins. , 1973, Journal of molecular biology.

[43]  J. Liebig,et al.  Ueber die Zusammensetzung des Caffeins , 2022 .