Kinetics of Bitumen‐Derived Gas Oil Upgrading Using a Commercial NiMo/Al2O3 Catalyst

Hydrotreating (HT) kinetics of Athabasca bitumen-derived gas oil has been studied between 340 to 420°C using a commercial NiMo/γ-Al2O3 catalyst. The kinetics analyses included overall conversion of high-boiling species into low-boiling products, hydrodenitrogenation (HDN) of total, basic and non-basic nitrogen compounds and hydrodesulfurization (HDS). Three temperature regimes were marked out for the kinetic analyses: low (340-370°C), intermediate (370-400°C) and high (400-420°C). The mechanism for the conversion of high to low-boiling species was observed to change from one temperature regime to the other, giving rise to different activation energies. HDS and HDN activation energies increased in the order: high < low < intermediate severity temperature regime. On a etudie la cinetique de l'hydrotraitement (HT) du gazole d'Athabasca entre 340 et 420 °C a l'aide d'un catalyseur commercial de NiMo/γ-Al2O3. Les analyses cinetiques comprennent la conversion globale des especes a point d'ebullition eleve en produits ayant des points d'ebullition bas, l'hydrodenitrogenation (HDN) de tous les composes azotes basiques et non basiques et l'hydrodesulfuration (HDS). Trois regimes de temperatures ont ete distingues pour les analyses cinetiques: faible (340-370°C), intermediaire (370-400°C) et eleve (400-420°C). On a remarque que le mecanisme de conversion des especes a point d'ebullition eleve en produits a point d'ebullition bas changeait d'un regime de temperatures a l'autre, entrainant l'augmentation des differentes energies d'activation. Les energies d'activation de l'HDS et HDN augmentent dans l'ordre: eleve < faible < regime de temperatures de severite intermediaire

[1]  S. Bhatia,et al.  Catalytic upgrading of petroleum residual oil by hydrotreating catalysts: a comparison between dispersed and supported catalysts , 1998 .

[2]  S. K. Bej,et al.  KINETICS OF HYDRODESULFURIZATION OF HEAVY GAS OIL DERIVED FROM OIL-SANDS BITUMEN , 2002 .

[3]  A. Ishihara,et al.  Deep Hydrodesulfurization of Light Gas Oil (Part 2) , 1999 .

[4]  Yu‐Wen Chen,et al.  Hydrodesulfurization reactions of residual oils over cobalt-molybdenum/alumina-aluminum phosphate catalysts in a trickle bed reactor , 1990 .

[5]  C. Satterfield,et al.  Reaction network and kinetics of the vapor-phase catalytic hydrodenitrogenation of quinoline , 1981 .

[6]  Isao Mochida,et al.  Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel , 1994 .

[7]  Papayannakos Nickos,et al.  Kinetics of catalytic hydrodesulfurization of a petroleum residue in a batch-recycle trickle bed reactor , 1984 .

[8]  S. K. Bej,et al.  Effect of diluent size on the performance of a micro-scale fixed bed multiphase reactor in up flow and down flow modes of operation , 2001 .

[9]  E. C. Sanford,et al.  Mild hydrocracking of bitumen-derived coker and hydrocracker heavy gas oils: kinetics, product yields, and product properties , 1989 .

[10]  Isao Mochida,et al.  Present State of the Art and Future Challenges in the Hydrodesulfurization of Polyaromatic Sulfur Compounds , 1998 .

[11]  A. Ishihara,et al.  Effects of H2S on hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene on alumina-supported NiMo and NiW catalysts , 2001 .

[12]  Bruce C. Gates,et al.  Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing , 1991 .

[13]  E. Blekkan,et al.  Catalytic hydrodesulfurization of a light gas oil over a NiMo catalyst: kinetics of selected sulfur components , 2002 .

[14]  A. Dalai,et al.  Product Selectivity during Hydrotreating and Mild Hydrocracking of Bitumen-Derived Gas Oil , 2003 .

[15]  S. K. Bej,et al.  Comparison of Hydrodenitrogenation of Basic and Nonbasic Nitrogen Compounds Present in Oil Sands Derived Heavy Gas Oil , 2001 .

[16]  Daniel Salazar-Sotelo,et al.  Hydrotreating of straight run gas oil–light cycle oil blends , 1999 .

[17]  S. T. Sie Reaction order and role of hydrogen sulfide in deep hydrodesulfurization of gas oils: consequences for industrial reactor configuration , 1999 .

[18]  C. Satterfield,et al.  Effect of hydrogen sulfide on the catalytic hydrodenitrogenation of quinoline , 1981 .

[19]  M. Landau,et al.  Medium severity hydrotreating and hydrocracking of Israeli shale oil — II. Testing of novel catalyst systems in a trickle bed reactor , 1998 .

[20]  A. Ishihara,et al.  Effect of H2S on Hydrodesulfurization of Dibenzothiophene and 4, 6-Dimethyldibenzothiophene , 1997 .

[21]  M. T. Martínez,et al.  Hydroprocessing of a Maya Residue. Intrinsic Kinetics of Sulfur-, Nitrogen-, Nickel-, and Vanadium-Removal Reactions , 1999 .

[22]  J. Ancheyta,et al.  Changes in apparent reaction order and activation energy in the hydrodesulfurization of real feedstocks , 2002 .

[23]  M. Herskowitz,et al.  Deep desulfurization of diesel fuels: kinetic modeling of model compounds in trickle-bed , 1999 .

[24]  Jie Chang,et al.  Kinetics of resid hydrotreating reactions , 1998 .