Other Field-Assisted Sintering Techniques

[1]  Young-Jin Kim,et al.  Lasers in additive manufacturing: A review , 2017 .

[2]  Xuan Wang,et al.  Modeling of selective laser sintering/selective laser melting , 2017, LASE.

[3]  R. Malhotra,et al.  Nanoscale-shape-mediated coupling between temperature and densification in intense pulsed light sintering , 2016, Nanotechnology.

[4]  N. Morrison,et al.  Roll‐to‐Roll processing of flexible devices and components , 2016 .

[5]  Hak-Sung Kim,et al.  All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink , 2016, Scientific Reports.

[6]  Hak-Sung Kim,et al.  Photonic welding of ultra-long copper nanowire network for flexible transparent electrodes using white flash light sintering , 2016 .

[7]  R. Baumann,et al.  Roll-to-roll infrared (IR) drying and sintering of an inkjet-printed silver nanoparticle ink within 1 second , 2015 .

[8]  A. Martucci,et al.  Photonic Sintering of Copper through the Controlled Reduction of Printed CuO Nanocrystals. , 2015, ACS applied materials & interfaces.

[9]  Hak-Sung Kim,et al.  Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films with High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering. , 2015, ACS applied materials & interfaces.

[10]  R. Malhotra,et al.  On the self-damping nature of densification in photonic sintering of nanoparticles , 2015, Scientific Reports.

[11]  E. O. Olakanmi,et al.  A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties , 2015 .

[12]  Wei Zhao,et al.  Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility. , 2015, ACS nano.

[13]  Hak-Sung Kim,et al.  Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics , 2015 .

[14]  A. Rubenchik,et al.  Calculation of laser absorption by metal powders in additive manufacturing. , 2015, Applied optics.

[15]  Sung-Hyeon Park,et al.  A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. , 2015, ACS applied materials & interfaces.

[16]  Choon-Gi Choi,et al.  Improved optical sintering efficiency at the contacts of silver nanowires encapsulated by a graphene layer. , 2015, Small.

[17]  Hak-Sung Kim,et al.  Temperature changes of copper nanoparticle ink during flash light sintering , 2014 .

[18]  Hyun-Jun Hwang,et al.  Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics , 2014, Nanotechnology.

[19]  Jin Young Kim,et al.  Rapid sintering of TiO2 photoelectrodes using intense pulsed white light for flexible dye-sensitized solar cells , 2014 .

[20]  Ulrich S. Schubert,et al.  Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink , 2014 .

[21]  Hyun-Jun Hwang,et al.  In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics , 2012, Nanotechnology.

[22]  Markus Hösel,et al.  Large-scale roll-to-roll photonic sintering of flexo printed silver nanoparticle electrodes , 2012 .

[23]  U. Schubert,et al.  Inkjet printing and low temperature sintering of CuO and CdS as functional electronic layers and Schottky diodes , 2011 .

[24]  Igor Smurov,et al.  Physics of Laser Materials Processing: Theory and Experiment , 2011 .

[25]  T. Watson,et al.  Ultrafast near infrared sintering of TiO2 layers on metal substrates for dye‐sensitized solar cells , 2011 .

[26]  M. Murray,et al.  Resolving the film-formation dilemma with infrared radiation-assisted sintering. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[27]  H. Thomas Hahn,et al.  Intense pulsed light sintering of copper nanoink for printed electronics , 2009 .

[28]  F. Oliveira,et al.  Mechanical properties of dense cordierite discs sintered by solar radiation heating , 2009 .

[29]  M. González,et al.  Solar sintering of alumina ceramics: Microstructural development , 2008 .

[30]  Igor Shishkovsky,et al.  Alumina–zirconium ceramics synthesis by selective laser sintering/melting , 2007 .

[31]  Alexander O. Govorov,et al.  Generating heat with metal nanoparticles , 2007 .

[32]  J. C. Fernandes,et al.  Solar sintering of cordierite-based ceramics at low temperatures , 2005 .

[33]  Pedro Amaral,et al.  Weibull statistical analysis of flexure breaking performance for alumina ceramic disks sintered by solar radiation heating , 2000 .

[34]  Ian Gibson,et al.  Additive manufacturing technologies : 3D printing, rapid prototyping, and direct digital manufacturing , 2015 .

[35]  Hak-Sung Kim,et al.  Flash light sintering of nickel nanoparticles for printed electronics , 2014 .

[36]  P. Blom,et al.  Photonic sintering of inkjet printed current collecting grids for organic solar cell applications , 2013 .

[37]  Han‐Ki Kim,et al.  UV-Assisted Chemical Sintering of Inkjet-Printed TiO2 Photoelectrodes for Low-Temperature Flexible Dye-Sensitized Solar Cells , 2012 .

[38]  G. G. Gladush,et al.  Physics of Laser Materials Processing , 2011 .

[39]  C. A. Anjinho,et al.  Fracture toughness of solar-sintered WC with Co additive , 2002 .