Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control.

Despite their technological importance, lead sulfide (PbS) nanocrystals have lagged behind nanocrystals of cadmium selenide (CdSe) and lead selenide (PbSe) in terms of size and energy homogeneity. Here, we show that the ratio of lead to sulfur precursor available during nucleation is a critical parameter affecting subsequent growth and monodispersity of PbS nanocrystal ensembles. Applying this knowledge, we synthesize highly monodisperse (size dispersity <5%) PbS nanocrystals over a wide range of sizes (exciton energies from 0.70 to 1.25 eV, or 1000-1800 nm) without the use of size-selective precipitations. This degree of monodispersity results in absorption peak half width at half max (HWHM) values as small as 20 meV, indicating an ensemble that is close to the homogeneous limit. Photoluminescence emission is correspondingly narrow and exhibits small Stokes shifts and quantum efficiencies of 30-60%. The nanocrystals readily self-assemble into ordered superlattices and exhibit exceptional air stability over several months.

[1]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[2]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[3]  Vicki L. Colvin,et al.  Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent , 2004 .

[4]  Ludovico Cademartiri,et al.  Size-dependent extinction coefficients of PbS quantum dots. , 2006, Journal of the American Chemical Society.

[5]  P. Guyot-Sionnest,et al.  Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots , 2002 .

[6]  Zeger Hens,et al.  Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. , 2011, ACS nano.

[7]  John E. Ritter,et al.  68.1: Invited Paper: Quantum Dot Manufacturing Requirements for the High Volume LCD Market , 2013 .

[8]  Z. Hens,et al.  Tuning the postfocused size of colloidal nanocrystals by the reaction rate: from theory to application. , 2012, ACS nano.

[9]  E. Aydil,et al.  Hot-Electron Transfer from Semiconductor Nanocrystals , 2010, Science.

[10]  Lukasz Brzozowski,et al.  Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. , 2010, ACS nano.

[11]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[12]  F. Wise,et al.  Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. , 2012, Nature nanotechnology.

[13]  Moungi G Bawendi,et al.  Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. , 2011, Nano letters.

[14]  Ou Chen,et al.  Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. , 2013, Nature materials.

[15]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[16]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[17]  Vladimir Bulović,et al.  Subdiffusive exciton transport in quantum dot solids. , 2014, Nano letters.

[18]  A. Amassian,et al.  High‐Performance Quantum‐Dot Solids via Elemental Sulfur Synthesis , 2014, Advanced materials.

[19]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[20]  Edward H. Sargent,et al.  Colloidal quantum dot photovoltaics: the effect of polydispersity. , 2012, Nano letters.

[21]  Christopher B. Murray,et al.  Colloidal synthesis of nanocrystals and nanocrystal superlattices , 2001, IBM J. Res. Dev..

[22]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[23]  Christopher B. Murray,et al.  Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface , 2010, Nature.

[24]  E. Shevchenko,et al.  Self-assembly of semiconductor nanocrystals into ordered superstructures , 2008 .

[25]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[26]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[27]  A. Rogach,et al.  Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study , 2001 .

[28]  Ludovico Cademartiri,et al.  Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. , 2006, The journal of physical chemistry. B.

[29]  Byung-Ryool Hyun,et al.  Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. , 2010, Nano letters.

[30]  I. Moreels,et al.  Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. , 2012, Journal of the American Chemical Society.

[31]  Vladimir Bulović,et al.  Practical Roadmap and Limits to Nanostructured Photovoltaics , 2011, Advanced materials.

[32]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[33]  Richard G Hennig,et al.  Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage. , 2011, Journal of the American Chemical Society.

[34]  Philippe Guyot-Sionnest,et al.  Electrical Transport in Colloidal Quantum Dot Films. , 2012, The journal of physical chemistry letters.

[35]  Alexei A. Efros,et al.  Dark and photo-conductivity in ordered array of nanocrystals. , 2013, Nano letters (Print).

[36]  Frank W. Wise,et al.  Optical Properties of Colloidal PbSe Nanocrystals , 2002 .

[37]  T. Hanrath Colloidal nanocrystal quantum dot assemblies as artificial solids , 2012 .

[38]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[39]  O. Voznyy,et al.  Role of bond adaptability in the passivation of colloidal quantum dot solids. , 2013, ACS nano.

[40]  L. Cademartiri,et al.  Emerging strategies for the synthesis of highly monodisperse colloidal nanostructures , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Matt Law,et al.  The photothermal stability of PbS quantum dot solids. , 2011, ACS nano.

[42]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .