An Analog/Mixed Signal FFT Processor for Ultra-Wideband OFDM Wireless Transceivers

As Orthogonal Frequency Division Multiplexing (OFDM) becomes more prevalent in new leading-edge data rate systems processing spectral bandwidths beyond 1 GHz, the required operating speed of the baseband signal processing, specifically the Analogto-Digital Converter (ADC) and Fast Fourier Transform (FFT) processor, presents significant circuit design challenges and consumes considerable power. Additionally, since Ultra-WideBand (UWB) systems operate in an increasingly crowded wireless environment at low power levels, the ability to tolerate large blocking signals is critical. The goals of this work are to reduce the disproportionately high power consumption found in UWB OFDM receivers while increasing the receiver linearity to better handle blockers. To achieve these goals, an alternate receiver architecture utilizing a new FFT processor is proposed. The new architecture reduces the volume of information passed through the ADC by moving the FFT processor from the digital signal processing (DSP) domain to the discrete time signal processing domain. Doing so offers a reduction in the required ADC bit resolution and increases the overall dynamic range of the UWB OFDM receiver. To explore design trade-offs for the new discrete time (DT) FFT processor, system simulations based on behavioral models of the key functions required for the processor are presented. A new behavioral model of the linear transconductor is introduced to better capture non-idealities and mismatches. The non-idealities of the linear transconductor, the largest contributor of distortion in the processor, are individually varied to determine their sensitivity upon the overall dynamic range of the DT FFT processor. Using these behavioral models, the proposed architecture is validated and guidelines for the circuit design of individual signal processing functions are presented. These results indicate that the DT FFT does not require a high degree of linearity from the linear transconductors or other signal processing functions used in its design. Based on the results of the system simulations, a prototype 8-point DT FFT processor is designed in 130 nm CMOS. The circuit design and layout of each of the circuit functions; serial-to-parallel converter, FFT signal flow graph, and clock generation circuitry is presented. Subsequently, measured results from the first proof-of-concept IC are presented. The measured results show that the architecture performs the FFT required for OFDM demodulation with increased linearity, dynamic range and blocker handling capability while simultaneously reducing overall receiver power consumption. The results demonstrate a dynamic range of 49 dB versus 36 dB for the equivalent all-digital signal processing approach. This improvement in dynamic range increases receiver performance by allowing detection of weak sub-channels attenuated by multipath. The measurements also demonstrate that the processor rejects large narrow-band blockers, while maintaining greater than 40 dB of dynamic range. The processor enables a 10x reduction in power consumption compared to the equivalent all digital processor, as it consumes only 25 mW and reduces the required ADC bit depth by four bits, enabling application in hand-held devices. Following the success of the first proof-of-concept IC, a second prototype is designed to incorporate additional functionality and further demonstrate the concept. The second proof-of-concept contains an improved version of the serial-to-parallel converter and clock generation circuitry with the additional function of an equalizer and parallelto-serial converter. Based on the success of system level behavioral simulations, and improved power consumption and dynamic range measurements from the proof-of-concept IC, this work represents a contribution in the architectural development and circuit design of UWB OFDM receivers. Furthermore, because this work demonstrates the feasibility of discrete time signal processing techniques at 1 GSps, it serves as a foundation that can be used for reducing power consumption and improving performance in a variety of future RF/mixed-signal systems.

[1]  Kenneth W. Martin,et al.  Digital Integrated Circuit Design , 1999 .

[2]  Ramjee Prasad,et al.  Universal wireless personal communications , 1998, Mobile communications series.

[3]  V.G. Oklobdzija,et al.  Improved sense-amplifier-based flip-flop: design and measurements , 2000, IEEE Journal of Solid-State Circuits.

[4]  A.A. Abidi,et al.  The Path to the Software-Defined Radio Receiver , 2007, IEEE Journal of Solid-State Circuits.

[5]  K. Parsi,et al.  A PRML read/write channel IC using analog signal processing for 200 Mb/s HDD , 1996 .

[6]  Alan B. Grebene,et al.  Analog Integrated Circuit Design , 1978 .

[7]  Martin Clara,et al.  A 6bit, 1.2GSps Low-Power Flash-ADC in 0.13µm Digital CMOS , 2004, DATE.

[8]  Behzad Razavi,et al.  Principles of Data Conversion System Design , 1994 .

[9]  J. Jacob Wikner,et al.  CMOS Data Converters for Communications , 2000 .

[10]  K. Bult,et al.  A CMOS Four-Quadrant Analog Multiplier , 1986 .

[11]  Desmond P. Taylor,et al.  A Statistical Model for Indoor Multipath Propagation , 2007 .

[12]  J. Silva-Martinez,et al.  An 11-Band 3.4 to 10.3 GHz MB-OFDM UWB Receiver in 0.25/spl mu/m SiGe BiCMOS , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[13]  A. Hajimiri,et al.  Bandwidth enhancement for transimpedance amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[14]  R.C. Taft,et al.  A 1.8-V 1.6-GSample/s 8-b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency , 2004, IEEE Journal of Solid-State Circuits.

[15]  Ding-Lan Shen,et al.  A 6-bit 800-MS/s Pipelined A/D Converter With Open-Loop Amplifiers , 2007, IEEE Journal of Solid-State Circuits.

[16]  M. Vertregt,et al.  A 6b 1.6 Gsample/s flash ADC in 0.18 μm CMOS using averaging termination , 2002 .

[17]  William J. Dally,et al.  Digital systems engineering , 1998 .

[18]  Yunho Jung,et al.  New efficient FFT algorithm and pipeline implementation results for OFDM/DMT applications , 2003, IEEE Trans. Consumer Electron..

[19]  C. Plett,et al.  A 0.18-$muhbox m$CMOS Analog Min-Sum Iterative Decoder for a (32,8) Low-Density Parity-Check (LDPC) Code , 2006, IEEE Journal of Solid-State Circuits.

[20]  C. Plett,et al.  A 1.2V CMOS multiplier for 10 Gbit/s equalization , 2005, Proceedings of the 31st European Solid-State Circuits Conference, 2005. ESSCIRC 2005..

[21]  Anuj Batra,et al.  A multi-band OFDM system for UWB communication , 2003, IEEE Conference on Ultra Wideband Systems and Technologies, 2003.

[22]  Boris Murmann,et al.  Digitally Assisted Pipeline ADCs: Theory and Implementation , 2004 .

[23]  Eby G. Friedman,et al.  A comparison of analog and digital circuit implementations of low power matched filters for use in portable wireless communication terminals , 1997 .

[24]  J.P. Keane,et al.  An adaptive analog noise-predictive decision-feedback equalizer , 2000, 2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103).

[25]  Martin H. Graham,et al.  Book Review: High-Speed Digital Design: A Handbook of Black Magic by Howard W. Johnson and Martin Graham: (Prentice-Hall, 1993) , 1993, CARN.

[26]  R. R. Spencer,et al.  A low-power 170-MHz discrete-time analog FIR filter , 1998 .

[27]  Alan F. Murray,et al.  IEEE International Solid-State Circuits Conference , 2001 .

[28]  Saska Lindfors,et al.  A 3-V 230-MHz CMOS decimation subsampler , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[29]  Stephen P. Boyd,et al.  Bandwidth extension in CMOS with optimized on-chip inductors , 2000, IEEE Journal of Solid-State Circuits.

[30]  Sang-Gug Lee,et al.  An inductance enhancement technique and its application to a shunt-peaked 2.5 Gb/s transimpedance amplifier design , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[31]  Jingbo Wang,et al.  A 1-GS/s 11-bit ADC With 55-dB SNDR, 250-mW Power Realized by a High Bandwidth Scalable Time-Interleaved Architecture , 2006, IEEE Journal of Solid-State Circuits.

[32]  G.R. Aiello,et al.  Design of a multiband OFDM system for realistic UWB channel environments , 2004, IEEE Transactions on Microwave Theory and Techniques.

[33]  Asad A. Abidi,et al.  A 6 b 1.3 GSample/s A/D converter in 0.35 μm CMOS , 2001 .

[34]  S. M. Rezaul Hasan,et al.  Design of a low-power 3.5-GHz broad-band CMOS transimpedance amplifier for optical transceivers , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[35]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[36]  C.W. Bostian,et al.  Analog to Digital Converters , 2020, Embedded Systems Design using the MSP430FR2355 LaunchPad™.

[37]  K. Uyttenhove,et al.  A 1.8-V 6-bit 1.3-GHz flash ADC in 0.25-μm CMOS , 2003, IEEE J. Solid State Circuits.

[38]  U. Jagdhold,et al.  A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM , 2004, IEEE Journal of Solid-State Circuits.

[39]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[40]  Robert W. Brodersen,et al.  Analysis and design of low-energy flip-flops , 2001, ISLPED '01.

[41]  Behzad Razavi,et al.  Design of Analog CMOS Integrated Circuits , 1999 .

[42]  J. Sevick Transmission Line Transformers , 1990 .

[43]  Theodore S. Rappaport,et al.  Propagation measurements and models for wireless communications channels , 1995, IEEE Commun. Mag..

[44]  Yu-Wei Lin,et al.  A 1-GS/s FFT/IFFT processor for UWB applications , 2005, IEEE Journal of Solid-State Circuits.

[45]  W. C. Black,et al.  A 900 MS/s 6b interleaved CMOS flash ADC , 2001, Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169).

[46]  Z. Wang,et al.  A CMOS four-quadrant analog multiplier with single-ended voltage output and improved temperature performance , 1991 .

[47]  J. Foerster,et al.  Channel modeling sub-committee report final , 2002 .

[48]  A.N. Willson,et al.  A power-scalable reconfigurable FFT/IFFT IC based on a multi-processor ring , 2006, IEEE Journal of Solid-State Circuits.

[49]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[50]  J.M. Gilbert,et al.  An integrated 802.11a baseband and MAC processor , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[51]  J.N. Babanezhad,et al.  A 20-V four-quadrant CMOS analog multiplier , 1985, IEEE Journal of Solid-State Circuits.

[52]  Ching-Che Chung,et al.  A 480Mb/s LDPC-COFDM-based UWB baseband transceiver , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[53]  Vincent C. Gaudet,et al.  Decoder IC with a Configurable Interleaver , 2003 .

[54]  Ramjee Prasad,et al.  OFDM for Wireless Communications Systems , 2004 .

[55]  Jeesung Lee,et al.  AHigh-Speed, Low-Complexity Radix-24FFT Processor forMB-OFDM UWB Systems , 2006 .

[56]  Terri S. Fiez,et al.  Analog VLSI : signal and information processing , 1994 .

[57]  Henrik Sjöland,et al.  23rd NORCHIP Conference, 2005 , 2005 .

[58]  M. Tiebout,et al.  A 4GS/s 6b flash ADC in 0.13 /spl mu/m CMOS , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[59]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[60]  A. Xotta,et al.  A 1 GHz CMOS analog front-end for a generalized PRML read channel , 2005, IEEE Journal of Solid-State Circuits.

[61]  P. Siniscalchi,et al.  A 450 Mb/s analog front-end for PRML read channels , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[62]  P. R. Gray,et al.  Parallelism in analog and digital PRML magnetic disk read channel equalizers , 1995 .

[63]  Daniel James Hibbard The Impact of Signal Bandwidth on Indoor Wireless Systems in Dense Multipath Environments , 2004 .

[64]  Shen-Iuan Liu,et al.  CMOS four-quadrant multiplier using bias feedback techniques , 1994 .

[65]  Alan V. Oppenheim,et al.  Discrete-time signal processing (2nd ed.) , 1999 .

[66]  Christer Svensson,et al.  A 1 GHz linearized CMOS track-and-hold circuit , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[67]  Chee Yee Kwok,et al.  A novel multi-input floating-gate MOS four-quadrant analog multiplier , 1996, IEEE J. Solid State Circuits.

[68]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .

[69]  R. Jacob Baker,et al.  CMOS Circuit Design, Layout, and Simulation , 1997 .

[70]  Sangsung Choi,et al.  A high-speed, low-complexity radix-2/sup 4/ FFT processor for MB-OFDM UWB systems , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[71]  Behzad Razavi,et al.  A 125-MHz CMOS mixed-signal equalizer for Gigabit Ethernet on copper wire , 2001, Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169).

[72]  Bin Zhao,et al.  Low power implementation of FFT/IFFT processor for IEEE 802.11a wireless LAN transceiver , 2002, The 8th International Conference on Communication Systems, 2002. ICCS 2002..

[73]  M.Y.W. Chia,et al.  A 3.1-10.6 GHz RF front-end for multiband UWB wireless receivers , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[74]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[75]  Taeyoung Yang,et al.  Small, planar, ultra-wideband antennas with top-loading , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[76]  Barrie Gilbert A high-performance monolithic multiplier using active feedback , 1974 .

[77]  A. Baschirotto A low-voltage sample-and-hold circuit in standard CMOS technology operating at 40 ms/s , 2001 .

[78]  Edgar Sanchez-Sinencio,et al.  CMOS transconductance multipliers: a tutorial , 1998 .

[79]  R.S. Sherratt,et al.  An efficient low power FFT implementation for multiband full-rate ultra-wideband (UWB) receivers , 2005, Proceedings of the Ninth International Symposium on Consumer Electronics, 2005. (ISCE 2005)..

[80]  A.A. Abidi,et al.  A 3.1- to 8.2-GHz zero-IF receiver and direct frequency synthesizer in 0.18-/spl mu/m SiGe BiCMOS for mode-2 MB-OFDM UWB communication , 2005, IEEE Journal of Solid-State Circuits.

[81]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[82]  Hiroshi Kodama,et al.  A 1.1V 3.1-to-9.5GHz MB-OFDM UWB transceiver in 90nm CMOS , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[83]  D.K. Su,et al.  A 150-MS/s 8-b 71-mW CMOS time-interleaved ADC , 2005, IEEE Journal of Solid-State Circuits.

[84]  Jin Liu,et al.  A CMOS 0.25-/spl mu/m continuous-time FIR filter with 125 ps per tap delay as a fractionally spaced receiver equalizer for 1-gb/s data transmission , 2005, IEEE Journal of Solid-State Circuits.

[85]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[86]  R. Jacob Baker Cmos: Mixed-Signal Circuit Design , 2002 .

[87]  F. Kuttner,et al.  A 6-bit 1.2-GS/s low-power flash-ADC in 0.13-/spl mu/m digital CMOS , 2005, IEEE Journal of Solid-State Circuits.

[88]  M.-C.F. Chang,et al.  A 1-GHz signal bandwidth 6-bit CMOS ADC with power-efficient averaging , 2005, IEEE Journal of Solid-State Circuits.

[89]  Sooping Saw,et al.  A CMOS 0.25-/spl mu/m continuous-time FIR filter with 125 ps per tap delay as a fractionally spaced receiver equalizer for 1-gb/s data transmission , 2005 .

[90]  Christopher R. Anderson,et al.  Design and Implementation of an Ultrabroadband Millimeter-Wavelength Vector Sliding Correlator Channel Sounder and In-Building Multipath Measurements at 2.5 & 60 GHz , 2002 .

[91]  A. Alvandpour,et al.  Power-performance analysis of sinusoidally clocked flip-flops , 2005, 2005 NORCHIP.

[92]  Jin Liu,et al.  A 2.5- to 3.5-Gb/s adaptive FIR equalizer with continuous-time wide-bandwidth delay line in 0.25-μm CMOS , 2006 .

[93]  A. Neviani,et al.  A 0.35-/spl mu/m CMOS analog turbo decoder for the 40-bit rate 1/3 UMTS channel code , 2005, IEEE Journal of Solid-State Circuits.