Modeling the martensite reorientation and resulting zero/negative thermal expansion of shape memory alloys

[1]  Daining Fang,et al.  A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson's ratio , 2018, International Journal of Solids and Structures.

[2]  G. Kang,et al.  A micromechanical constitutive model for grain size dependent thermo-mechanically coupled inelastic deformation of super-elastic NiTi shape memory alloy , 2018, International Journal of Plasticity.

[3]  Xujing Yang,et al.  Three dimensional lightweight lattice structures with large positive, zero and negative thermal expansion , 2018 .

[4]  K. Tsuchiya,et al.  Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy , 2017 .

[5]  I. Beyerlein,et al.  Stress and strain relaxation in magnesium AZ31 rolled plate: In-situ neutron measurement and elastic viscoplastic polycrystal modeling , 2016 .

[6]  G. Kang,et al.  A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals , 2015 .

[7]  J. Deng,et al.  High‐Curie‐Temperature Ferromagnetism in (Sc,Fe)F3 Fluorides and its Dependence on Chemical Valence , 2015, Advanced materials.

[8]  L. H. Poh Scale transition of a higher order plasticity model – A consistent homogenization theory from meso to macro , 2013 .

[9]  Rhj Ron Peerlings,et al.  Towards a homogenized plasticity theory which predicts structural and microstructural size effects , 2013 .

[10]  Jian Wang,et al.  A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms , 2013 .

[11]  S. Miyazaki,et al.  Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti–23Nb–2Zr–0.7Ta–1.2O alloy , 2013 .

[12]  Rhj Ron Peerlings,et al.  Homogenization towards a grain-size dependent plasticity theory for single slip , 2013 .

[13]  Roderic S. Lakes,et al.  Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization , 2013 .

[14]  L. G. Machado,et al.  Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys , 2012 .

[15]  K. Takenaka Negative thermal expansion materials: technological key for control of thermal expansion , 2012, Science and technology of advanced materials.

[16]  Wael Zaki,et al.  Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling , 2011 .

[17]  Zhonghua Sun,et al.  Adjustable Zero Thermal Expansion in Antiperovskite Manganese Nitride , 2011, Advanced materials.

[18]  G. Cheng,et al.  Optimal structure design with low thermal directional expansion and high stiffness , 2011 .

[19]  W. Zaki,et al.  A constitutive model for shape memory alloys accounting for thermomechanical coupling , 2011 .

[20]  K. Evans,et al.  Near-zero thermal expansivity 2-D lattice structures: Performance in terms of mass and mechanical properties , 2011 .

[21]  P. Anderson,et al.  Coupling between martensitic phase transformations and plasticity: A microstructure-based finite element model , 2010 .

[22]  Yonggang Huang,et al.  A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials , 2010 .

[23]  S. Bouvier,et al.  Effect of regularization of Schmid law on self-consistent estimates for rate-independent plasticity of polycrystals , 2009 .

[24]  Alain Molinari,et al.  Homogenization of elastic-viscoplastic heterogeneous materials : Self-consistent and Mori-Tanaka schemes , 2009 .

[25]  Gwénaëlle Proust,et al.  Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31 , 2009 .

[26]  Kenneth E. Evans,et al.  A generalised scale-independent mechanism for tailoring of thermal expansivity: Positive and negative , 2008 .

[27]  R. Lakes Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude , 2007 .

[28]  L. Brinson,et al.  Shape memory alloys, Part I: General properties and modeling of single crystals , 2006 .

[29]  Dimitris C. Lagoudas,et al.  Shape memory alloys, Part II: Modeling of polycrystals , 2006 .

[30]  A. Goodwin,et al.  Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials , 2005 .

[31]  T. P. G. Thamburaja Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys , 2005 .

[32]  T. Törköly,et al.  Determination of Residual Stresses in Hot Extruded Rod , 2004 .

[33]  Toshihiro Omori,et al.  Characteristics of Cu–Al–Mn-based shape memory alloys and their applications , 2004 .

[34]  Lallit Anand,et al.  Thermal effects in the superelasticity of crystalline shape-memory materials , 2003 .

[35]  T Prakash G. Thamburaja,et al.  Thermo-mechanically coupled superelastic response of initially-textured Ti-Ni sheet , 2003 .

[36]  T. P. G. Thamburaja,et al.  Superelastic behavior in tension–torsion of an initially-textured Ti–Ni shape-memory alloy , 2002 .

[37]  K. Ishida,et al.  Invar-type effect induced by cold-rolling deformation in shape memory alloys , 2002 .

[38]  G. Hu,et al.  Thermal expansion of composites with shape memory alloy inclusions and elastic matrix , 2002 .

[39]  D. McDowell,et al.  Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy , 2002 .

[40]  T Prakash G. Thamburaja,et al.  Polycrystalline shape-memory materials: effect of crystallographic texture , 2001 .

[41]  T. Ito,et al.  Glass fiber/polypropylene composite laminates with negative coefficients of thermal expansion , 1999 .

[42]  B. Johansson,et al.  Origin of the Invar effect in iron–nickel alloys , 1999, Nature.

[43]  Ken Gall,et al.  The role of texture in tension–compression asymmetry in polycrystalline NiTi , 1999 .

[44]  C. Lexcellent,et al.  Micromechanical modelling for tension–compression pseudoelastic behavior of AuCd single crystals , 1998 .

[45]  George J. Weng,et al.  A self-consistent model for the stress-strain behavior of shape-memory alloy polycrystals , 1998 .

[46]  Miinshiou Huang,et al.  A Multivariant model for single crystal shape memory alloy behavior , 1998 .

[47]  George J. Weng,et al.  Martensitic transformation and stress-strain relations of shape-memory alloys , 1997 .

[48]  Said Ahzi,et al.  On the self-consistent modeling of elastic-plastic behavior of polycrystals , 1997 .

[49]  C. Lexcellent,et al.  Micromechanics-based modeling of two-way memory effect of a single crystalline shape-memory alloy , 1997 .

[50]  L. Anand,et al.  A computational procedure for rate-independent crystal plasticity , 1996 .

[51]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[52]  Ricardo A. Lebensohn,et al.  A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals , 1994 .

[53]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[54]  P. A. Turner,et al.  Self-consistent modeling of visco-elastic polycrystals: Application to irradiation creep and growth , 1993 .

[55]  S. Ahzi,et al.  A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .

[56]  S. Nemat-Nasser,et al.  Rate-dependent, finite elasto-plastic deformation of polycrystals , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[57]  T. Iwakuma,et al.  Finite elastic-plastic deformation of polycrystalline metals , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[58]  G. J. Weng,et al.  A Unified, Self-Consistent Theory for the Plastic-Creep Deformation of Metals , 1982 .

[59]  G. Weng Self-Consistent Determination of Time-Dependent Behavior of Metals , 1981 .

[60]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[61]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[62]  John W. Hutchinson,et al.  Elastic-plastic behaviour of polycrystalline metals and composites , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[63]  R. Hill Generalized constitutive relations for incremental deformation of metal crystals by multislip , 1966 .

[64]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[65]  Bernard Budiansky,et al.  THEORETICAL PREDICTION OF PLASTIC STRAINS OF POLYCRYSTALS , 1961 .

[66]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[67]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[68]  D. Fang,et al.  Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit , 2016 .

[69]  R. Arróyave,et al.  Tailored thermal expansion alloys , 2016 .

[70]  Dimitris C. Lagoudas,et al.  A constitutive model for cyclic actuation of high-temperature shape memory alloys , 2014 .

[71]  Miinshiou Huang,et al.  A multivariant micromechanical model for SMAs Part 1. Crystallographic issues for single crystal model , 2000 .

[72]  David L. McDowell,et al.  The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi , 2000 .

[73]  W. Reimers,et al.  RESIDUAL STRESS AND TEXTURE DUE TO COLD AND HOT EXTRUSION PROCESSES , 1999 .

[74]  Mohammed Cherkaoui,et al.  Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals , 1998 .

[75]  P. Lipinski,et al.  Elastoplasticity of micro-inhomogeneous metals at large strains , 1989 .